Ex.1. Determine the magnitude of the hydrostatic water force acting on the bottom of tank. Draw hydrostatic forces' diagrams:
a) dimensions of the bottom: $a \times b=3 \times 1 \mathrm{~m}$, height of the water in tank: $h=4 m$, density $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$.
b) dimensions of the bottom: $a \times b=5 \times 3 \mathrm{~m}$, height of the water in tank: $h=6 \mathrm{~m}$, density $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$. Vacuum pressure in the tank: $p_{v}=1 \mathrm{kPa}$.

Ex.2. Rectangle hatch (dimensions: $a \times b=0,6 \times 0,5 m$) closes hole (dimensions: $c \times d=0,5 \times 0,4 m$) located on horizontal wall of the tank. Determine mass of the hatch that guarantees the hole being closed if $h=2 m$ and overpressure in the tank $p_{o}=200 \mathrm{hPa}$.

Ex.3. Square hole ($a=1,5 m$) is located on the vertical tank's wall. The hole is closed with plane gate, hinge is located on O point. The weight W ($\operatorname{arm} r=2,5 \mathrm{~m}$) pushes the gate to the tank's wall. Determine the weight (W) guaranteeing the gate being closed if $h=3 \mathrm{~m}$.
Density of the liquid: $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$.
$I_{x 0}=a^{4} / 12$.
Ex.4. A tank $a=2 m$ wide and $b=3 m$ long is fitted with moveable gate (hinge is located on O point). Which one of two forces: F_{1} or F_{2} would be smaller if $h=3 \mathrm{~m}$ and $\alpha=30^{\circ}$. $I_{x 0}=c^{3} \cdot b / 12$ (c is the length of the inclined wall).

Ex.5. Draw hydrostatic forces' diagrams and determine magnitude of the hydrostatic water force on AB wall (part of cylinder) in open tank if: $h=4 m, r=2 m, b=5 m$, $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$.

Ex.6. Draw hydrostatic forces' diagrams and determine magnitude of the hydrostatic water force on ABC wall (part of cylinder) in open tank if: $h=5 m, r=2 m, b=10 m$, $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$.

Ex.7. Draw hydrostatic forces' diagrams and determine magnitude of the hydrostatic water force on ABC wall (part of cylinder) in open tank if: $h=3 m, r=0,5 m, b=4 m$, $a=0,5 m, \rho_{w}=1000 \mathrm{~kg} / \mathrm{m}^{3}$.

Ex.8. Draw hydrostatic forces' diagrams and determine magnitude of the hydrostatic water force on ABC wall (part of cylinder) in open tank if: $h=2,5 m, r=1 m, b=5 m$, $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$, overpressure in a tank $p_{o}=2 \mathrm{kPa}$.

Ex.9. Draw hydrostatic forces' diagrams and determine magnitude of the hydrostatic water force on ABC wall (part of sphere) in open tank if: $h=4 m, r=1 m, b=4 m, a=1 m$, $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$.

Ex.10. Draw hydrostatic forces' diagrams and determine magnitude of the hydrostatic water force on ABCD wall (part of cylinder) in pressure tank if: $h_{1}=4 m, h_{2}=3 m$, $r=0,5 m, b=2,5 m, \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$.

