FLUID STATICS. MANOMETERS.

Ex. 1. A tank is constructed of a series of cylinders as shown in a figure. The tank contains: oil $\rho_{o}=$ $915 \mathrm{~kg} / \mathrm{m}^{3}$, water $\rho_{w}=1000 \mathrm{~kg} / \mathrm{m}^{3}$, glycerin $\rho_{g}=1300 \mathrm{~kg} / \mathrm{m}^{3}$, mercury $\rho_{m}=13600 \mathrm{~kg} / \mathrm{m}^{3}$. A mercury manometer is attached to the bottom of the tank. Calculate the manometer reading h_{m}. (Ans. $h_{m}=3.3 \mathrm{~cm}$)

Ex. 2. A mercury manometer is used to measure the pressure difference in the two pipelines as shown in a figure. Fuel $\left(\rho_{f}=850 \mathrm{~kg} / \mathrm{m}^{3}\right)$ is flowing in A and oil $\left(\rho_{o}=915 \mathrm{~kg} / \mathrm{m}^{3}\right)$ is flowing in B. An air pocket has become entrapped in the oil as indicated. Determine the pressure in pipe B if the pressure in A is 105.5 kPa . (Ans. $p_{B}=124.9 \mathrm{kPa}$)

Ex. 3. Determine the angle θ of the inclined tube shown in figure if the pressure at A is 7 kPa greater than that at B. $\left(\right.$ Ans. $\left.\theta=23.86^{\circ}\right)$

Ex. 4. Determine the pressure at point
A. (Ans. $p_{A}=385.8 \mathrm{kPa}$)

Ex. 5. A weight lies on a piston with a radius $r_{2}=1.0 \mathrm{~m}$. Determine the force F_{1} applied to the piston with radius $r_{1}=20 \mathrm{~cm}$ if the hydraulic jack is in a balance. The jack is filled by an oil with $\rho_{o}=850 \mathrm{~kg} / \mathrm{m}^{3}$. A mass of weight is $m_{w}=1000 \mathrm{~kg}$. Neglect the mass of the pistons. (Ans. $F_{1}=392.4 N$)

Ex. 6. An inverted U-tube manometer is used to measure the difference of water pressure between two points in a pipe. Find the difference of pressure between point B and A if the density of water is $\rho=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$, $h_{1}=60 \mathrm{~cm}, h=45 \mathrm{~cm}, h_{2}=180 \mathrm{~cm}$. (Ans. $p_{B A}=16.2 \mathrm{kPa}$)

Ex. 7. In figure, fluid A is water and fluid B is mercury. What will be the difference in level h_{1} if the pressure at X is $140 \mathrm{kN} / \mathrm{m}^{2}$ and $h_{2}=1.5 \mathrm{~m}$.
(Ans. $h_{1}=40 \mathrm{~cm}$)

Ex. 8. Calculate a manometer reading h if density of oil $\rho_{o}=800 \mathrm{~kg} / \mathrm{m}^{3}$, density of water $\rho_{w}=1000 \mathrm{~kg} / \mathrm{m}^{3}$ and density of mercury $\rho_{m}=13600 \mathrm{~kg} / \mathrm{m}^{3}$, $h_{1}=8 m h_{2}=4 m, h_{3}=2 m$.
(Ans. $h=0.45 \mathrm{~m}$)

Ex. 9. Calculate a formula for manometer reading h_{2} for a situation shows at figure. As a known values we have: $h_{3}, h, \rho_{1}, \rho_{2}, \rho_{w}$.
(Ans. $\left.h_{2}=\left(h \rho_{w}-h_{3} \rho_{1}\right) / \rho_{2}\right)$

Ex. 10. A mercury manometer is connected to open tank of fuel. Calculate a change of manometer reading h if a level of fuel increases about ΔH.
(Ans. $\left.\Delta h=\Delta H \rho_{f} /\left(2 \rho_{m}-\rho_{f}\right)\right)$

Ex. 11. In well-type manometer (with constant zero level) there is neglected a change of fluid level in w big vessel (diameter D). Calculate a ratio d / D for which an error connected with a change of fluid level ΔH is less than 1%. (Ans. $d / D \leqslant 0.1$)

Ex. 12. A mercury manometer connects two oil pipelines. Calculate a pressure difference between points A and B if $H=2 m, \Delta h=0.2 m$, $\rho_{o}=800 \mathrm{~kg} / \mathrm{m}^{3}, \rho_{m}=13600 \mathrm{~kg} / \mathrm{m}^{3}$. (Ans. $p_{A B}=9.418 k P a$)

