CHARACTERISTICS OF A FLUID.

Ex. 1. A large balloon having a volume of $90.000 \mathrm{~m}^{3}$ contains helium under standard atmospheric conditions (pressure $p_{0}=101 \mathrm{kPa}$ and temperature $\left.t_{0}=15^{\circ} \mathrm{C}\right)$. Determine the density and total weight of the helium. (Ans. $\rho_{\mathrm{He}}=0.169 \mathrm{~kg} / \mathrm{m}^{3}$;
$q_{\text {He }}=1.49 \cdot 10^{5} \mathrm{~N}$)

Ex. 2. Calculate density of carbon dioxide at temperature $T_{1}=773 \mathrm{~K}$ and under pressure $p_{1}=101325 \mathrm{~N} / \mathrm{m}^{2}$, if under the same pressure p_{1} and at temperature $T_{0}=273 \mathrm{~K}$, its density is $\rho_{0}=1.98 \mathrm{~kg} / \mathrm{m}^{3}$. (Ans. $\rho_{1}=0.699 \mathrm{~kg} / \mathrm{m}^{3}$)

Ex. 3. Oil is squeezed in a tank. Calculate its coefficient of compressibility β, if pressure p_{1} changes from 0 to $2.5 \mathrm{MN} / \mathrm{m}^{2}$ and the initial height of oil $h=1000 \mathrm{~mm}$ decreases by $\Delta h=$ 1.8 mm . (Ans. $\beta=0.72 \cdot 10^{-9} \mathrm{~m}^{2} / \mathrm{N}$)

Ex. 4. High-pressure tank has volume of $h_{t}=50 \mathrm{dm}^{3}$. Calculate increment of pressure inside the tank Δp, if it was pumped by $50.5 d m^{3}$ of alcohol. Coefficient of compressibility of alcohol is $\beta=0.122 \cdot 10^{-8} \mathrm{~m}^{2} / \mathrm{N}$.
(Ans. $\Delta p=8116 k P a$)

Ex. 5. Calculate density of water at temperature $T=277.15 \mathrm{~K}$, if pressure increases from 1 to 100 atm . In calculation use mean coefficient of compressibility of water $\beta=5.1 \cdot 10^{-10} \mathrm{~m}^{2} / \mathrm{N}$. (Ans. $\rho_{2} \approx 1005 \mathrm{~kg} / \mathrm{m}^{3}$)

Ex. 6. Calculate increment of density of glycerin $\Delta \rho$, if its temperature in closed tank increased from $T_{1}=293 \mathrm{~K}$ to $T_{2}=323 \mathrm{~K}$. Coefficient of volume expansion for glycerin is $\alpha=0.59 \cdot 10^{-3} K^{-1}$. (Ans. $\Delta \rho=22.3 \mathrm{~kg} / \mathrm{m}^{3}$)

Ex. 7. Dynamic coefficient of viscosity of oil at temperature $T_{2}=323 \mathrm{~K}$ is equal $\mu=5.884 \cdot 10^{-3} N \cdot s / m^{2}$. Calculate its kinematic coefficient of viscosity ν, if density of oil at temperature $T_{1}=293 \mathrm{~K}$ is $\rho_{1}=800 \mathrm{~kg} / \mathrm{m}^{3}$. Coefficient of volume expansion for oil is $\alpha=0.96 \cdot 10^{-3} \mathrm{~K}^{-1}$. (Ans. $\nu=7.57 \cdot 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$)

Ex. 8. A Newtonian fluid having density $\rho=920 \mathrm{~kg} / \mathrm{m}^{3}$ and kinematic coefficient of viscosity $\nu=4 \cdot 10^{-4} \mathrm{~m}^{2} / \mathrm{s}$ flows past a fixed surface. The velocity profile near the surface is shown at the figure $\left(u(y)=U \sin \left(\frac{\pi}{2} \frac{y}{\delta}\right)\right)$. Determine the magnitude and direction of the shearing stress τ developed on the plate. Express answer in terms of U and δ, with U and δ expressed in units of meters per second and meters, respectively. (Ans. $\tau=0.578 U / \delta, N / m^{3}$).

Ex. 9. A cylinder of diameter $d=$ 122 mm and length $l=200 \mathrm{~mm}$ is placed inside a concentric long pipe of diameter $D=125 \mathrm{~mm}$. An oil film is introduced in the gap between the pipe and the cylinder. What force is necessary to move the cylinder at a velocity of $v=1 \mathrm{~m} / \mathrm{s}$? Assume that the dynamic coefficient of viscosity of oil is $\mu=0.30 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$ and its density is $\rho_{o}=900 \mathrm{~kg} / \mathrm{m}^{3}$. (Ans. $F=15.33 \mathrm{~N}$)

