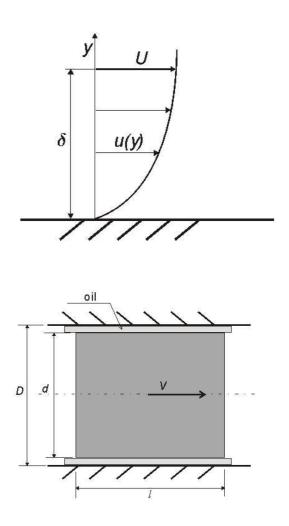

CHARACTERISTICS OF A FLUID.

Ex. 1. A large balloon having a volume of 90.000 m^3 contains helium under standard atmospheric conditions (pressure $p_0 = 101 \, kPa$ and temperature $t_0 = 15^{\circ}C$). Determine the density and total weight of the helium. (Ans. $\rho_{\text{He}} = 0.169 \, kg/m^3$; $q_{\text{He}} = 1.49 \cdot 10^5 \, N$)

Ex. 2. Calculate density of carbon dioxide at temperature $T_1 = 773 K$ and under pressure $p_1 = 101325 N/m^2$, if under the same pressure p_1 and at temperature $T_0 = 273 K$, its density is $\rho_0 = 1.98 kg/m^3$. (Ans. $\rho_1 = 0.699 kg/m^3$)

Ex. 3. Oil is squeezed in a tank. Calculate its coefficient of compressibility β , if pressure p_1 changes from 0 to $2.5 MN/m^2$ and the initial height of oil h = 1000 mm decreases by $\Delta h =$ 1.8 mm. (Ans. $\beta = 0.72 \cdot 10^{-9} m^2/N$)


Ex. 4. High-pressure tank has volume of $h_t = 50 \, dm^3$. Calculate increment of pressure inside the tank Δp , if it was pumped by $50.5 \, dm^3$ of alcohol. Coefficient of compressibility of alcohol is $\beta = 0.122 \cdot 10^{-8} \, m^2/N$. (Ans. $\Delta p = 8116 \, kPa$)

Ex. 5. Calculate density of water at temperature T = 277.15 K, if pressure increases from 1 to 100 atm. In calculation use mean coefficient of compressibility of water $\beta = 5.1 \cdot 10^{-10} m^2/N$. (Ans. $\rho_2 \approx 1005 kg/m^3$)

Ex. 6. Calculate increment of density of glycerin $\Delta \rho$, if its temperature in closed tank increased from $T_1 = 293 K$ to $T_2 = 323 K$. Coefficient of volume expansion for glycerin is $\alpha = 0.59 \cdot 10^{-3} K^{-1}$. (Ans. $\Delta \rho = 22.3 kg/m^3$)

Ex. 7. Dynamic coefficient of viscosity of oil at temperature $T_2 = 323 K$ is equal $\mu = 5.884 \cdot 10^{-3} N \cdot s/m^2$. Calculate its kinematic coefficient of viscosity ν , if density of oil at temperature $T_1 = 293 K$ is $\rho_1 = 800 kg/m^3$. Coefficient of volume expansion for oil is $\alpha = 0.96 \cdot 10^{-3} K^{-1}$. (Ans. $\nu = 7.57 \cdot 10^{-6} m^2/s$) Ex. 8. A Newtonian fluid having density $\rho = 920 \, kg/m^3$ and kinematic coefficient of viscosity $\nu = 4 \cdot 10^{-4} \, m^2/s$ flows past a fixed surface. The velocity profile near the surface is shown at the figure $(u(y) = U \sin(\frac{\pi}{2} \frac{y}{\delta}))$. Determine the magnitude and direction of the shearing stress τ developed on the plate. Express answer in terms of U and δ , with U and δ expressed in units of meters per second and meters, respectively. (Ans. $\tau = 0.578 \, U/\delta$, N/m^3).

Ex. 9. A cylinder of diameter d = 122 mm and length l = 200 mm is placed inside a concentric long pipe of diameter D = 125 mm. An oil film is introduced in the gap between the pipe and the cylinder. What force is necessary to move the cylinder at a velocity of v = 1 m/s? Assume that the dynamic coefficient of viscosity of oil is $\mu = 0.30 kg/m \cdot s$ and its density is $\rho_o = 900 kg/m^3$. (Ans. F = 15.33 N)

