Principle of Linear Momentum Application

Henryk Kudela

Contents

1 Introduction 1
2 Application of the linear momentum equation 2
3 Elementary facts from Vector Calculus 5
3.1 Divergence 5
3.2 The flux of vector field 6
3.3 Gauss' theorem (the divergence theorem) 7
4 Problems 7

1 Introduction

Let as recall the material from the lecture $n 3$ equation of motion. Equation of motions is build on the basis of the balance of momentum principle. In particle mechanics a particle P that has mass m and move with the velocity v is said to posses (linear) momentum $m v$ and the general statement of Newton's second law is

$$
\begin{equation*}
\frac{d(m v)}{d t}=F \tag{1}
\end{equation*}
$$

The term F encompass the "sum of the forces acting on the mass ". To generalize this law to continuum mechanics we define the linear momentum at time t possed by material of density $\rho(\mathbf{x}, t)$ that occupies a region $\Omega(t)$ as

$$
\int_{\Omega(t)} \rho(\mathbf{x}, t) \mathbf{v} d v
$$

This region $\Omega(t)$ is moved with the fluid and boundary of this region is created all the time by the same fluid particles. The mass enclosed in this region is constant. Such a region is called the closed system In fluid mechanics we regarded two main types of forces:

1. body forces F_{B} acting on the entire region $\Omega(t)$ for e.g in gravitational field density of this force is $\mathbf{f}=(0,0,-g)$ and

$$
F_{B}=\int_{\Omega(t)} \rho(\mathbf{x}, t) \mathbf{f} d v
$$

2. surface forces F_{S}, short length forces, which act across the surface. They are descried by the vector of tension $\mathbf{t}(\mathbf{x}, t)$ and surface force is given by

$$
F_{S}=\int_{S} \mathbf{t} d S
$$

In this lecture we will assumed that surface forces are represent by pressure. Pressure forces are isotropic, i.e direction-independent. This means that are described by a scalar filed $p(x, t)$ such that the force exerted across an arbitrarily-oriented surface element δS at \mathbf{x} with unit normal \mathbf{n} is always $\mathbf{n} p \delta S$, independent of the chosen orientation.

Definition 1. Let $\mathbf{t}(\mathbf{x}, t, \mathbf{n})$ be given tension vector depending on time t, position \mathbf{x}, and unit vector n. Let velocity vector \mathbf{u} and $\rho>0$ be positive faction and \mathbf{f} a given vector field. We say that $(\mathbf{u}, \rho, \mathbf{f}, \mathbf{t})$ satisfy the balance of momentum principle if

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} \int_{\Omega(t)} \rho \mathbf{u} d v=\int_{\Omega(t)} \rho \mathbf{f} d v+\int_{S} \mathbf{t} d S \tag{2}
\end{equation*}
$$

where S is boundary of $\Omega(t)$.
Applying the Reynolds Transport Theorem to the component ρu_{i} (see lecture $n 3$ equation of motion) we can rewrite the eq. (refmoment) as follows

$$
\begin{equation*}
\int_{\Omega(t)}\left(\frac{\partial\left(\rho u_{i}\right)}{\partial t}+\operatorname{div}\left(\rho v_{i} \mathbf{u}\right)\right) d v=\int_{\Omega(t)} \rho \mathbf{f} d v+\int_{S} \mathbf{t} d S \tag{3}
\end{equation*}
$$

where \mathbf{f} is the extraneous force per unit mass, $\operatorname{div}(\rho \mathbf{u})=\frac{\partial\left(\rho u_{1}\right)}{\partial x}+\frac{\partial\left(\rho u_{2}\right)}{\partial y}+\frac{\partial\left(\rho u_{3}\right)}{\partial z}$. Assuming that flow is steady (all partial derivative with respect to t are equal zero $\frac{\partial \rho u}{\partial t}=0$), that $\mathbf{t}=-p \mathbf{n}$ and assuming also that the extraneous force per unit mass can be neglect, applying the divergence theorem one can write the momentum equation in vector form as follows

$$
\begin{equation*}
\int_{S} \rho \mathbf{v}(\mathbf{v} \cdot \mathbf{n}) d S=-\int_{S} p \mathbf{n} d S \tag{4}
\end{equation*}
$$

2 Application of the linear momentum equation

Example 1. Find the reaction force exerted on a fix vane when a jet discharging $60 \mathrm{l} / \mathrm{s}$ of water at $50 \mathrm{~m} / \mathrm{s}$ is deflected through 135°. At first we define the reaction force. Due to fact that the jet with the vane is surrounded by atmospheric pressure p_{a} we define the reaction force as

$$
\begin{equation*}
\mathbf{R}=\int_{S_{\text {wall }}}\left(p-p_{a}\right) \mathbf{n} d S \tag{5}
\end{equation*}
$$

Then we applied the vector equation (4) to the control value marked as $C V$.

$$
\begin{equation*}
\int_{S_{\text {in }}} \rho \mathbf{u}(\mathbf{u} \cdot \mathrm{n}) d S+\int_{S_{\text {out }}} \rho \mathbf{u}(\mathbf{u} \cdot \mathrm{n}) d S=-\int_{S_{\text {in }}} p_{a} \mathbf{n} d S-\int_{S_{\text {wall }}} p \mathbf{n} d S-\int_{S_{\text {out }}} p_{a} \mathbf{n} d S-\int_{S_{\text {free }}} p_{a} \mathbf{n} d S \tag{6}
\end{equation*}
$$

Figure 1: Free jet impinging on smooth, fixed vane

Now one can proved using the Gauss theorem (see below) that

$$
\begin{equation*}
\int_{S_{\text {in }} \cup S_{\text {wall }} \cup S_{\text {out }} \cup S_{\text {free }}} p_{a} \mathbf{n} d S=0 \tag{7}
\end{equation*}
$$

Using Eq. (7) and definition of reaction (16) equation (6) one can write

$$
\begin{equation*}
\int_{S_{\text {in }}} \mathbf{u}(\mathbf{u} \cdot \mathbf{n})+\int_{S_{\text {out }}} \mathbf{u}(\mathbf{u} \cdot \mathbf{n})+\mathbf{R}=0 \tag{8}
\end{equation*}
$$

Now, using the mean value theorem from Calculus we can write

$$
\begin{equation*}
\int_{S_{i n}} \rho \mathbf{u}(\mathbf{u} \cdot \mathbf{n}) d S=-\mathbf{u}_{i n} \rho q_{v}, \quad \text { where } \quad q_{v}=\int(\mathbf{u} \cdot \mathbf{n}) d S \tag{9}
\end{equation*}
$$

And also

$$
\begin{equation*}
\int_{S_{\text {out }}} \rho \mathbf{u}(\mathbf{u} \cdot \mathbf{n}) d S=\mathbf{u}_{\text {out }} \rho q_{v} \tag{10}
\end{equation*}
$$

So the vector equation one can write

$$
\begin{equation*}
-\mathbf{v}_{\text {in }} \rho q_{v}+\mathbf{v}_{\text {out }} \rho q_{v}+\mathbf{R}=0 \tag{11}
\end{equation*}
$$

The sign minus in the first term results from the fact that the normal vector \mathbf{n} is always in opposite direction to the velocity $\mathbf{u}_{i n}$. Now, if we want to calculate the component of the reaction $\mathbf{R}=$ $\left(R_{x}, R_{y}\right)$ we must project the forces on the x-axis and y-axis.

$$
R_{x}=V_{0} \rho q_{v}-V_{0} \rho q_{v} \cos \Theta=V_{0} \rho q_{v}(1-\cos \Theta), \quad R_{y}=-V_{0} \rho \sin \Theta
$$

Example 2. Fluid issues from a long slot and strikes against a smooth inclined flat plate (see Figure). Determine the division of the flow and the force exerted on the plate, neglecting losses due to impact. We write the vector equation (11) for control value marked by dashed line

$$
\begin{equation*}
-\mathbf{u}_{\text {in }} \rho q_{v}+\mathbf{u}_{\text {out }} \rho q_{v}+\mathbf{R}=0 \tag{12}
\end{equation*}
$$

Figure 2: Free jet impinging on an inclined fixed plane surface

Projecting above equation on axis along the plate and due to fact that we assumed that the fluid is inviced, no force is exerted in the fluid by the plate in this direction, we have

$$
-V_{0} \rho q_{v} \cos (\Theta)+\rho V_{1} q_{v_{1}}-\rho V_{2} q_{v_{2}}=0
$$

By continuity equation

$$
\begin{equation*}
q_{v}=q_{v_{1}}+q_{v_{2}} \tag{13}
\end{equation*}
$$

Due to fact that no forces that would be able to change the velocity of the fluid particle we assumed also

$$
\begin{equation*}
V_{0}=V_{1}=V_{2} \tag{14}
\end{equation*}
$$

From equations (12), (13), (14) we obtain

$$
\begin{equation*}
q_{v_{1}}=\frac{q_{v}}{2}(1+\cos \Theta), \quad q_{v_{2}}=\frac{q_{v}}{2}(1-\cos \Theta) \tag{15}
\end{equation*}
$$

The force $F=-R_{n}$ exerted on the plate must be normal to it. For momentum equation normal to the plate

$$
F=R_{n}=\rho V_{0} q_{v} \sin \Theta
$$

Example 3. A 10-cm fire hose with 3-cm nozzle discharges $1.5 \mathrm{~m}^{3} / \mathrm{min}$ to atmosphere. Assuming frictionless flow, find the force F_{B} exerted by the flange bolts to hold the nozzle on the hose.

Solution. We define hydrodynamic force as

$$
\begin{equation*}
\mathbf{R}=\int_{S_{\text {wall }}}\left(p-p_{a}\right) \mathbf{n} d S \tag{16}
\end{equation*}
$$

We write the momentum equation for the control volume (CV) (see figure)

$$
\begin{equation*}
\int_{S_{1}} \rho \mathbf{u}(\mathbf{u} \cdot \mathbf{n}) d S+\int_{S_{2}} \rho \mathbf{u}(\mathbf{u} \cdot \mathbf{n}) d S=-\int_{S_{\text {wall }}} p \mathbf{n} d S-\int_{S_{1}} p \mathbf{n} d S-\int_{S_{2}} p \mathbf{n} d S \tag{17}
\end{equation*}
$$

From equation (7) we have

$$
\begin{equation*}
\int_{S_{1} \cup S_{2} \cup S_{\text {wall }}} p_{a} \mathbf{n} d S=0 \tag{18}
\end{equation*}
$$

Adding equation (18) to the left side of equation (17) we obtain

$$
\begin{equation*}
\int_{S_{1}} \rho \mathbf{u}(\mathbf{u} \cdot \mathbf{n}) d S+\int_{S_{2}} \rho \mathbf{u}(\mathbf{u} \cdot \mathbf{n}) d S=-\int_{S_{\text {wall }}}\left(p-p_{a}\right) \mathbf{n} d S-\int_{S_{1}}\left(p-p_{a}\right) \mathbf{n} d S-\int_{S_{2}}\left(p_{a}-p_{a}\right) \mathbf{n} d S \tag{19}
\end{equation*}
$$

But the $\left(p-p_{a}\right)$ is a gage pressure at given cross section. So we can write equation (19) as

$$
\begin{equation*}
-p_{\text {gage }_{1}} A_{1}-v_{1} \rho q_{v}+v_{2} \rho q_{v}+R_{x}=0 \tag{20}
\end{equation*}
$$

Projecting the momentum equation (20) on x-axis we obtain reaction force:

$$
\begin{equation*}
R_{x}=u_{1} \rho q_{v}-u_{2} \rho q_{v}+p_{\text {gage }_{1}} A_{1} \tag{21}
\end{equation*}
$$

The velocities u_{1} and u_{2} we obtain from continuity equation $q_{v}=u_{1} A_{1}=u_{2} A_{2}, u_{1}=\frac{q_{v}}{A_{1}}=$ $0.025 /\left((\right.$ pi/4 $\left.) 0.03^{2}\right)=35.4, u_{2}=3.2$. The gage pressure we find by applying the Bernoulli law for cross section 1-2.

$$
p_{1}+\frac{\rho v_{1}^{2}}{2}=p_{b}+\frac{\rho v_{2}^{2}}{2}
$$

We know that $p_{2}=p_{a}$ and $p_{\text {gage }_{1}}=p_{1}-p_{a}=1 / 2 \rho\left(u_{2}^{2}-u_{1}^{2}\right)$. So

$$
p_{\text {gage }_{1}}=\frac{1}{2}\left[1000\left(35.4^{2}-3.2^{2}\right)\right]=620000 P a
$$

$A_{1}=\frac{\pi D_{1}^{2}}{4}=0.00785 \mathrm{~m}^{2}$. And at last

$$
R_{x}=p_{\text {gage }_{1}} A_{1}-\rho q_{v}\left(u_{2}-u_{1}\right)=4067 N
$$

3 Elementary facts from Vector Calculus

3.1 Divergence

Divergence operator in fluid mechanics play important role in analysis of flow so it is worth to spend some time to better understanding this operator.At first let start to define the divergence in one dimension. Imagine a current of water flowing along the real line \mathbb{R}. For each point $x \in \mathbb{R}$,

Figure 3: The fire hose with a nuzzle
let $u(x)$ describe the rate at which water is flowing past this point. Now, in places where the water slows down, we expect the derivative $u^{\prime}(x)$ to be negative. We also expect the water to accumulate at such locations (because water is entering the region more quickly than it leaves). In places where the water speeds up, we expect the derivative $u^{\prime}(x)$ to be positive, and we expect the water to be depleted at such locations (because water is leaving the region more quickly than it arrives).Thus, we define the divergence of the flow to be the rate at which water is being depleted

$$
\begin{equation*}
\operatorname{div} u(x)=u^{\prime}(x) \tag{22}
\end{equation*}
$$

For two-dimensional case to each point (x, y) we attach the vector $\left(u_{1}(x, y), u_{2}(x, y)\right), u(x, y)=$ $u_{1}(x, y) \mathbf{i}+u_{2}(x, y) \mathbf{j}$. One can think as a two-dimensional current as a superposition of a horizontal current u_{1} and vertical current u_{2}. If the horizontal current is speed-up, we expect it to deplete the fluid at this location. If it is slows-down, we expect it to deposit fluid at this location. The divergence of the two-dimensional current is thus just the sum of the divergence of its one-dimensional components:

$$
\begin{equation*}
\operatorname{div} \mathbf{u}(x, y)=\frac{\partial u_{1}(x, y)}{\partial x}+\frac{\partial u_{2}(x, y)}{\partial y} \tag{23}
\end{equation*}
$$

Analogically we can define the divergence in three dimension

$$
\begin{equation*}
\operatorname{div} \mathbf{u}(x, y, z)=\frac{\partial u_{1}(x, y, z)}{\partial x}+\frac{\partial u_{2}(x, y, z)}{\partial y}+\frac{\partial u_{3}(x, y, z)}{\partial z} \tag{24}
\end{equation*}
$$

The divergence measures the rate at which vector field $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)$ is "diverging" or "converging" near (x, y, z). Notices that divergence div \mathbf{u} is a scalar function. We say that vector field u is incompressible when $\operatorname{div} \mathbf{u}=0$

3.2 The flux of vector field

Consider a fluid flow field

$$
\begin{equation*}
\mathbf{u}(x, y, z)=u_{1} \mathbf{i}+u_{2} \mathbf{j}+u_{3} \mathbf{k} \tag{25}
\end{equation*}
$$

and a surface S in Space. Call one side of S positive and the other side negative, and at each point of S let \mathbf{n} be the unit vector on the positive side of S. The surface integral

$$
\begin{equation*}
\int_{S} \mathbf{u} \cdot \mathbf{n} d S \tag{26}
\end{equation*}
$$

will be the flux, or net rate of fluid flow across the surface S from the negative to the positive side. Notice that uder the integral we have the scalar (dot) product. It is define as $\mathbf{u} \cdot \mathbf{n}=\sum_{i=1}^{3} u_{i} n_{i}$

Figure 4: Oriented surface with unit normal vector

3.3 Gauss' theorem (the divergence theorem)

Gauss's theorem corresponds to a quite simple and rather intuitive idea: the integral of a derivative equals the net value of the function (whose derivative is being integrated) over the boundary of the domain of integration. In one space dimension this is precisely the fundamental theorem of calculus:

$$
\begin{equation*}
\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a) \tag{27}
\end{equation*}
$$

This basic idea contained in (27) generalizes to two dimensions in the form of Gauss's theorem which is also known as the divergence theorem.

Theorem 1. (Gauss, or divergence). For any smooth vector filed \mathbf{F} over a region $R \in \mathbb{R}$ with a smooth boundary S

$$
\begin{equation*}
\int_{R} \operatorname{div} \mathbf{F}=\int_{S} \mathbf{F} \cdot \mathbf{n} d A \tag{28}
\end{equation*}
$$

In figure (5) is shown the geometry of surface integration, showing the vector \mathbf{F} over a differential element of surface $d A$. Also the outward unit vector normal \mathbf{n} and projection of \mathbf{F} onto $\mathbf{n}, \mathbf{F} \cdot \mathbf{n}$. The integral over S is just the sum of these projections multiplied by their corresponding differential areas, in the limit area of the patches approaching zero.

4 Problems

Fluid with constant velocity U_{∞} and density ρ flows past along the plate $(u)=U_{\infty} \mathbf{i}$. The pressure is assumed uniform, and so it has no net force on the plate. The only effect of the plate is due to

Figure 5: Integration of a vector field over a surface
boundary shear due to viscosity of the fluid. The no-slip condition at the wall brings the fluid near the boundary to a halt, and these slowly moving particles retard their neighbors above, so that at the end of the plate there is a significant retarded boundary layer of thickness $y=\delta$. Apply the momentum equation (2) and find the drag force $\mathrm{D},\left(D=-\int_{S_{\text {wall }}} \mathrm{t} d S, S=b L\right)$ (Answer:

$$
D=\left.\rho b \int_{0}^{\delta} u\left(U_{\infty}-u\right) d y\right|_{x=L}
$$

. During this course I will be used the following books:

References

[1] F. M. White, 1999. Fluid Mechanics, McGraw-Hill.
[2] B. R. Munson, D.F Young and T. H. Okiisshi, 1998. Fundamentals of Fluid Mechanics, John Wiley and Sons, Inc. .
[3] E. J. Shaughnessy, Jr.I. M. Katz and J. P. Schaffer, 2005. Introduction to Fluid Mechnaics, Oxford University Press.

Figure 6: Analysis of the drag force on a flat plate due to boundary share by applying the linear momentum principle.

