Principle of Linear Momentum Application
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1 Introduction

Let as recall the material from the lectur® equation of motionEquation of motions is build on
the basis of the balance of momentum principle. In partiokemanics a particl® that has mass
mand move with the velocity is said to posses (linear) momentuamvand the general statement

of Newton ’s second law is d(my)
mv,
=F. 1
at 1)
The termF encompass the "sum of the forces acting on the mass ”. To alerethis law to
continuum mechanics we define the linear momentum at tipessed by material of density

p(X,t) that occupies a regiof2(t) as

/ p(X,t)v du.
Q()

This regionQ(t) is moved with the fluid and boundary of this region is creatikdha time by
the same fluid particles. The mass enclosed in this regioonistant. Such a region is called the
closed systenin fluid mechanics we regarded two main types of forces:

1. body forceds acting on the entire regiof(t) for e.g in gravitational field density of this
force isf = (0,0,—g) and

FB:/ p(x,t)fdu
Q(t)



2. surface forcebs, short length forces, which act across the surface. Thegleseried by the
vector of tensiont(x,t) and surface force is given by

&:/ms
S

In this lecture we will assumed that surface forces are sgmteby pressure. Pressure forces
are isotropic, i.e direction-independent. This means #natdescribed by a scalar filed
p(x,t) such that the force exerted across an arbitrarily-oriestethce elemerdSatx with
unit normaln is alwaysnpdS, independent of the chosen orientation.

Definition 1. Lett(x,t,n) be given tension vector depending on time t, posiicend unit vector
n. Let velocity vectou and p > 0 be positive faction andl a given vector field. We say that
(u,p,f,t) satisfy the balance of momentum principle if

9/ pudU:/ pfdu+/tdS @)
dt Jaw) Q) S

where S is boundary @(t).

Applying the Reynolds Transport Theoremto the componenpu; ( see lecturan3 equation of
motior) we can rewrite the eq. (refmoment) as follows

/ (d(p )+d|v(pv. )du _/ pfdu+/td5 (3)
ap \ ot
wheref is the extraneous force per unit madi(pu) = ‘?(g)‘:l) + ‘9(5;2) + (p %), Assuming that

flow is steady (all partial derivative with respect to t aremlqzeroap“ 0), thatt = —pn and
assuming also that the extraneous force per unit mass cardbect applying the divergence
theorem one can write the momentum equation in vector forfolksvs

Jpvv-nyds=— [ pnds (@)

2 Application of the linear momentum equation

Example 1. Find the reaction force exerted on a fix vane when a jet diggihgr601 /s of water
at 50 m/s is deflected through35°. At first we define the reaction force. Due to fact that the jet
with the vane is surrounded by atmospheric pressyre/@define the reaction force as

R= (P—pa)ndS (5)
Spall

Then we applied the vector equation (4) to the control valaeked as CV.

pu(u-n)dS+ pu(u-n)dS= — /pands/ pndS— / pandS/ pandS (6)
Sin Sout n SNaII Sout
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Figure 1: Free jet impinging on smooth, fixed vane

Now one can proved using the Gauss theorem (see below) that

/ pandS=0 @
SnUSyall USutUStree

Using Eq. (7) and definition of reaction (16) equation (6) ca@ write
/ u(u-n)+ u(u-n)+R=0 (8)
n Sout
Now, using the mean value theorem from Calculus we can write
/ pu(u-n)dS= —UiyPQy, where q= /(u-n)dS 9
Sn

And also

S pu(u-n)dS= UouPqy (10)
ut

So the vector equation one can write
—VinPOy + VourPQv +R =0 (11)

The sign minus in the first term results from the fact that twenal vectorn is always in opposite
direction to the velocityu;,. Now, if we want to calculate the component of the reacfos
(R«, Ry) we must project the forces on the x-axis and y-axis.

R« = Vopay — Vopagy cosO = Vppagy(1—cosO), Ry = —Vopsin®
Example 2. Fluid issues from a long slot and strikes against a smootliriad flat plate (see
Figure). Determine the division of the flow and the force ation the plate, neglecting losses
due to impact. We write the vector equation (11) for contedlie marked by dashed line

—UinP0y + UoutPy+ R =0 (12)
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Figure 2: Free jet impinging on an inclined fixed plane swefac

Projecting above equation on axis along the plate and duadbthat we assumed that the fluid is
inviced, no force is exerted in the fluid by the plate in thiection, we have

—Vopaycog©) + pVidy, — pVaQy, =0

By continuity equation
Ov = Qv; + CQv, (13)

Due to fact that no forces that would be able to change thecitglof the fluid particle we assumed
also
Vo=V1 =V, (14)

From equations (12), (13), (14) we obtain

Y

Ov, > (1+ cosO), Qv, = R

> (1—cosO) (15)

The force F= —R, exerted on the plate must be normal to it. For momentum eguakbrmal to
the plate
F =R, = pVoqySin®

Example 3. A 10—cm fire hose with 3—cm nozzle discharg&sn®/min to atmosphere. Assuming
frictionless flow, find the forcegrexerted by the flange bolts to hold the nozzle on the hose.
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Solution. We define hydrodynamic force as

R= [ (p—pa)ndS (16)
Swall

We write the momentum equation for the control volume (Ca#8 figure)

/pu(u-n)d8+/ pu(u-n)dS:—/ pndS—/ pndS—/ pndS (a7)
S S Swall S S

From equation (7) we have

/ PandS=0 (18)
S USUSyall

Adding equation (18) to the left side of equation (17) we iobta
[ putunydst [ puu-nds=— [ (p—pandS- | (p—pandS- [ (pa—pandS (19
S S Syall S S
But the(p— pa) is a gage pressure at given cross section. So we can writeiequd 9) as

—Pgaga A1 — V1P +V2p0y + Ry =0 (20)

Projecting the momentum equation (20) on x-axis we obtantien force:

Ry = U1 pQy — U2p0y + Pgage A1 (21)
The velocities yand y we obtain from continuity equation, g u1A; = WAy, Uy = %l =
0.025/((pi/4)0.03%) = 35.4, u; = 3.2. The gage pressure we find by applying the Bernoulli law

for cross sectiob-2.

P _ o PY
P11+ > =Pot >

We know that p= pa and Rjage = P1— Pa = 1/2p (U5 — 1f). So
Pgage = % [100035.4% — 3.2%)] = 620 000Pa

A, = ™1 — 0.00785n?. And at last

Rx = Pgage A1 — poyv(uz — ug) = 4067N

3 Elementary facts from Vector Calculus

3.1 Divergence

Divergence operator in fluid mechanics play important ralamalysis of flow so it is worth to
spend some time to better understanding this operatorgttidir start to define the divergence in
one dimension. Imagine a current of water flowing along tfa lire R. For each poink € R,
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Figure 3: The fire hose with a nuzzle

let u(x) describe the rate at which water is flowing past this pointwNbo places where the water
slows down, we expect the derivatiuéx) to be negative. We also expect the water to accumulate
at such locations (because water is entering the region quickly than it leaves). In places where
the water speeds up, we expect the derivatliyg) to be positive, and we expect the water to be
depleted at such locations (because water is leaving thenregpre quickly than it arrives).Thus,
we define thalivergenceof the flow to be the rate at which water is being depleted

div u(x) = u'(x) (22)

For two-dimensional case to each pojrty) we attach the vectofus(x,y),u2(x,y)), u(x,y) =
u1(X,Y)i +Uz(X,y)j. One can think as a two—dimensional current as a supergositia horizontal
currentu; and vertical current,. If the horizontal current is speed-up, we expect it to depiee
fluid at this location. If it is slows-down, we expect it to aeit fluid at this location. The diver-
gence of the two—dimensional current is thus just the sutheoflivergence of its one-dimensional
components:

. o dul(x’ y) dUZ(X, y)
div u(x,y) = o + dy (23)
Analogically we can define the divergence in three dimension
: _0u(x,y,2) | dup(XY,2)  Ous(Xy,2)
div u(x,y,z) = T dy +— (24)

The divergence measures the rate at which vectortietd us, up, u3) is "diverging” or "converg-
ing” near (X,y,z). Notices that divergendé/ u is a scalar function. We say that vector fields
incompressible whediv u =0
3.2 The flux of vector field
Consider a fluid flow field

U(X,Y,2) = Uzi + Upj + Uk (25)
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and a surface S in Space. Call one sid& pbsitive and the other side negative, and at each point
of Slet n be the unit vector on the positive side of S. The surface iateg

/ u-nds (26)
S

will be the flux, or net rate of fluid flow across the surf&fom the negative to the positive side.
Notice that uder the integral we have the scalar (dot) produis define asi-n = Z?:l Ui nj

Figure 4: Oriented surface with unit normal vector

3.3 Gauss’ theorem (the divergence theorem)

Gauss's theorem corresponds to a quite simple and rathiiviatidea: the integral of a derivative
equals the net value of the function (whose derivative isdp@itegrated) over the boundary of
the domain of integration. In one space dimension this isipe¢y thefundamental theorem of
calculus

/bF’(x)dx: F(b) - F(a) 27)

This basic idea contained in (27) generalizes to two dinoassin the form of Gauss’s theorem
which is also known as théivergence theorem

Theorem 1. (Gauss, or divergence). For any smooth vector fifedver a region Re R with a

smooth boundary S
/divF:/F-ndA (28)
R S

In figure (5) is shown the geometry of surface integratiommwshg the vectorF over a dif-
ferential element of surfacgA. Also the outward unit vector normaland projection of onto
n, F-n. The integral oveBis just the sum of these projections multiplied by their esponding
differential areas, in the limit area of the patches appnvaczero.

4 Problems

Fluid with constant velocityJ. and densityp flows past along the plate) = Ui. The pressure
is assumed uniform, and so it has no net force on the plate ofilyeeffect of the plate is due to
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Figure 5: Integration of a vector field over a surface

boundary shear due to viscosity of the fluid. The no—slip d@rdat the wall brings the fluid near
the boundary to a halt, and these slowly moving particlesrdetheir neighbors above, so that at
the end of the plate there is a significant retarded boundsmsr lof thicknesy = 8. Apply the
momentum equation (2) and find the drag forceD= — [  tdS S= bL)(Answer:

5
D= pb/0 U(Us —U)dy [x=t

. During this course | will be used the following books:

References

[1] F. M. White, 1999 Fluid Mechanics McGraw-Hill.

[2] B. R. Munson, D.F Young and T. H. Okiisshi, 1998undamentals of Fluid Mechanicdohn
Wiley and Sons, Inc. .

[3] E. J. Shaughnessy, Jr.,I. M. Katz and J. P. Schaffer, 20@®duction to Fluid Mechnaics
Oxford University Press.



y Streamline just Uy
outside the
shear-layer region
Uy
Oncoming _
stream - Boundary layer 3
parallel 1 - where shear stress
to plate -7 is significant
y u(y)
r b
1 X
0 L
Plate of width b

Figure 6: Analysis of the drag force on a flat plate due to bawp@dhare by applying the linear
momentum principle.



