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1 Introduction

Let as recall the material from the lecturen3 equation of motion. Equation of motions is build on
the basis of the balance of momentum principle. In particle mechanics a particleP that has mass
mand move with the velocityv is said to posses (linear) momentummvand the general statement
of Newton ’s second law is

d(mv)
dt

= F. (1)

The termF encompass the ”sum of the forces acting on the mass ”. To generalize this law to
continuum mechanics we define the linear momentum at timet possed by material of density
ρ(x, t) that occupies a regionΩ(t) as

∫

Ω(t)
ρ(x, t)v dυ .

This regionΩ(t) is moved with the fluid and boundary of this region is created all the time by
the same fluid particles. The mass enclosed in this region is constant. Such a region is called the
closed systemIn fluid mechanics we regarded two main types of forces:

1. body forcesFB acting on the entire regionΩ(t) for e.g in gravitational field density of this
force isf = (0,0,−g) and

FB =

∫

Ω(t)
ρ(x, t)fdυ
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2. surface forcesFS, short length forces, which act across the surface. They aredescried by the
vector of tensiont(x, t) and surface force is given by

FS=

∫

S
t dS.

In this lecture we will assumed that surface forces are represent by pressure. Pressure forces
are isotropic, i.e direction-independent. This means thatare described by a scalar filed
p(x, t) such that the force exerted across an arbitrarily-orientedsurface elementδSatx with
unit normaln is alwaysnpδ S, independent of the chosen orientation.

Definition 1. Let t(x, t,n) be given tension vector depending on time t, positionx, and unit vector
n. Let velocity vectoru and ρ > 0 be positive faction andf a given vector field. We say that
(u,ρ , f, t) satisfy the balance of momentum principle if

d
dt

∫

Ω(t)
ρudυ =

∫

Ω(t)
ρ fdυ +

∫

S
tdS (2)

where S is boundary ofΩ(t).

Applying theReynolds Transport Theorem to the componentρui ( see lecturen3 equation of
motion) we can rewrite the eq. (refmoment) as follows

∫

Ω(t)

(

∂ (ρui)

∂ t
+div(ρviu)

)

dυ =

∫

Ω(t)
ρ fdυ +

∫

S
tdS (3)

wheref is the extraneous force per unit mass ,div(ρu) = ∂ (ρu1)
∂x + ∂ (ρu2)

∂y + ∂ (ρu3)
∂z . Assuming that

flow is steady (all partial derivative with respect to t are equal zero∂ρu
∂ t = 0), that t = −pn and

assuming also that the extraneous force per unit mass can be neglect, applying the divergence
theorem one can write the momentum equation in vector form asfollows

∫

S
ρv(v ·n)dS=−

∫

S
pndS (4)

2 Application of the linear momentum equation

Example 1. Find the reaction force exerted on a fix vane when a jet discharging 60 l/s of water
at 50 m/s is deflected through135o. At first we define the reaction force. Due to fact that the jet
with the vane is surrounded by atmospheric pressure pa we define the reaction force as

R =
∫

Swall

(p− pa)ndS (5)

Then we applied the vector equation (4) to the control value marked as CV.
∫

Sin

ρu(u ·n)dS+
∫

Sout

ρu(u ·n)dS=−
∫

Sin

pandS−
∫

Swall

pndS−
∫

Sout

pandS−
∫

Sf ree

pandS (6)
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Figure 1: Free jet impinging on smooth, fixed vane

Now one can proved using the Gauss theorem (see below) that
∫

Sin∪Swall∪Sout∪Sf ree

pandS= 0 (7)

Using Eq. (7) and definition of reaction (16) equation (6) onecan write
∫

Sin

u(u ·n)+
∫

Sout

u(u ·n)+R = 0 (8)

Now, using the mean value theorem from Calculus we can write
∫

Sin

ρu(u ·n)dS=−uinρqv, where qv =
∫

(u ·n)dS (9)

And also
∫

Sout

ρu(u ·n)dS= uoutρqv (10)

So the vector equation one can write

−vinρqv+voutρqv+R = 0 (11)

The sign minus in the first term results from the fact that the normal vectorn is always in opposite
direction to the velocityuin. Now, if we want to calculate the component of the reactionR =
(Rx,Ry) we must project the forces on the x-axis and y-axis.

Rx =V0ρqv−V0ρqvcosΘ =V0ρqv(1−cosΘ), Ry =−V0ρ sinΘ

Example 2. Fluid issues from a long slot and strikes against a smooth inclined flat plate (see
Figure). Determine the division of the flow and the force exerted on the plate, neglecting losses
due to impact. We write the vector equation (11) for control value marked by dashed line

−uinρqv+uoutρqv+R = 0 (12)
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Figure 2: Free jet impinging on an inclined fixed plane surface

Projecting above equation on axis along the plate and due to fact that we assumed that the fluid is
inviced, no force is exerted in the fluid by the plate in this direction, we have

−V0ρqvcos(Θ)+ρV1qv1 −ρV2qv2 = 0

By continuity equation
qv = qv1 +qv2 (13)

Due to fact that no forces that would be able to change the velocity of the fluid particle we assumed
also

V0 =V1 =V2 (14)

From equations (12), (13), (14) we obtain

qv1 =
qv

2
(1+cosΘ), qv2 =

qv

2
(1−cosΘ) (15)

The force F= −Rn exerted on the plate must be normal to it. For momentum equation normal to
the plate

F = Rn = ρV0qvsinΘ

Example 3. A 10–cm fire hose with 3–cm nozzle discharges1.5 m3/min to atmosphere. Assuming
frictionless flow, find the force FB exerted by the flange bolts to hold the nozzle on the hose.

4



Solution. We define hydrodynamic force as

R =

∫

Swall

(p− pa)ndS (16)

We write the momentum equation for the control volume (CV) (see figure)
∫

S1

ρu(u ·n)dS+
∫

S2

ρu(u ·n)dS=−

∫

Swall

pndS−
∫

S1

pndS−
∫

S2

pndS (17)

From equation (7) we have
∫

S1∪S2∪Swall

pandS= 0 (18)

Adding equation (18) to the left side of equation (17) we obtain
∫

S1

ρu(u ·n)dS+
∫

S2

ρu(u ·n)dS=−

∫

Swall

(p− pa)ndS−
∫

S1

(p− pa)ndS−
∫

S2

(pa− pa)ndS (19)

But the(p− pa) is a gage pressure at given cross section. So we can write equation (19) as

−pgage1A1−v1ρqv+v2ρqv+Rx = 0 (20)

Projecting the momentum equation (20) on x-axis we obtain reaction force:

Rx = u1ρqv−u2ρqv+ pgage1A1 (21)

The velocities u1 and u2 we obtain from continuity equation qv = u1A1 = u2A2, u1 = qv
A1

=

0.025/((pi/4)0.032) = 35.4, u2 = 3.2. The gage pressure we find by applying the Bernoulli law
for cross section1–2.

p1+
ρv2

1

2
= pb+

ρv2
2

2

We know that p2 = pa and pgage1 = p1− pa = 1/2ρ(u2
2−u2

1). So

pgage1 =
1
2

[

1000(35.42 −3.22)
]

= 620 000Pa

A1 =
πD2

1
4 = 0.00785m2. And at last

Rx = pgage1A1−ρqv(u2−u1) = 4067N

3 Elementary facts from Vector Calculus

3.1 Divergence

Divergence operator in fluid mechanics play important role in analysis of flow so it is worth to
spend some time to better understanding this operator.At first let start to define the divergence in
one dimension. Imagine a current of water flowing along the real line R. For each pointx ∈ R,

5



Figure 3: The fire hose with a nuzzle

let u(x) describe the rate at which water is flowing past this point. Now, in places where the water
slows down, we expect the derivativeu′(x) to be negative. We also expect the water to accumulate
at such locations (because water is entering the region morequickly than it leaves). In places where
the water speeds up, we expect the derivativeu′(x) to be positive, and we expect the water to be
depleted at such locations (because water is leaving the region more quickly than it arrives).Thus,
we define thedivergenceof the flow to be the rate at which water is being depleted

div u(x) = u′(x) (22)

For two-dimensional case to each point(x,y) we attach the vector(u1(x,y),u2(x,y)), u(x,y) =
u1(x,y)i +u2(x,y)j . One can think as a two–dimensional current as a superposition of a horizontal
currentu1 and vertical currentu2. If the horizontal current is speed–up, we expect it to deplete the
fluid at this location. If it is slows-down, we expect it to deposit fluid at this location. The diver-
gence of the two–dimensional current is thus just the sum of the divergence of its one-dimensional
components:

div u(x,y) =
∂u1(x,y)

∂x
+

∂u2(x,y)
∂y

(23)

Analogically we can define the divergence in three dimension

div u(x,y,z) =
∂u1(x,y,z)

∂x
+

∂u2(x,y,z)
∂y

+
∂u3(x,y,z)

∂z
(24)

The divergence measures the rate at which vector fieldu = (u1,u2,u3) is ”diverging” or ”converg-
ing” near (x,y,z). Notices that divergencediv u is a scalar function. We say that vector fieldu is
incompressible whendiv u = 0

3.2 The flux of vector field

Consider a fluid flow field
u(x,y,z) = u1i+u2j +u3k (25)
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and a surface S in Space. Call one side ofSpositive and the other side negative, and at each point
of S let n be the unit vector on the positive side of S. The surface integral

∫

S
u ·ndS (26)

will be the flux, or net rate of fluid flow across the surfaceS from the negative to the positive side.
Notice that uder the integral we have the scalar (dot) product. It is define asu ·n = ∑3

i=1 ui ni

Figure 4: Oriented surface with unit normal vector

3.3 Gauss’ theorem (the divergence theorem)

Gauss’s theorem corresponds to a quite simple and rather intuitive idea: the integral of a derivative
equals the net value of the function (whose derivative is being integrated) over the boundary of
the domain of integration. In one space dimension this is precisely thefundamental theorem of
calculus:

∫ b

a
F ′(x)dx= F(b)−F(a) (27)

This basic idea contained in (27) generalizes to two dimensions in the form of Gauss’s theorem
which is also known as thedivergence theorem.

Theorem 1. (Gauss, or divergence). For any smooth vector filedF over a region R∈ R with a
smooth boundary S

∫

R
divF =

∫

S
F ·ndA (28)

In figure (5) is shown the geometry of surface integration, showing the vectorF over a dif-
ferential element of surfacedA. Also the outward unit vector normaln and projection ofF onto
n, F ·n. The integral overS is just the sum of these projections multiplied by their corresponding
differential areas, in the limit area of the patches approaching zero.

4 Problems

Fluid with constant velocityU∞ and densityρ flows past along the plate(u) =U∞i. The pressure
is assumed uniform, and so it has no net force on the plate. Theonly effect of the plate is due to
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Figure 5: Integration of a vector field over a surface

boundary shear due to viscosity of the fluid. The no–slip condition at the wall brings the fluid near
the boundary to a halt, and these slowly moving particles retard their neighbors above, so that at
the end of the plate there is a significant retarded boundary layer of thicknessy= δ . Apply the
momentum equation (2) and find the drag force D, (D =−

∫

Swall
tdS,S= bL)(Answer:

D = ρb
∫ δ

0
u(U∞ −u)dy |x=L

. During this course I will be used the following books:
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Figure 6: Analysis of the drag force on a flat plate due to boundary share by applying the linear
momentum principle.
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