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1 Laminar or turbulent flow

The flow of a fluid in a pipe may be laminar flow or it may be turlmiléow. Osborne Reynolds
(18421912), a British scientist and mathematician, waditbeto distinguish the difference be-
tween these two classifications of flow by using a simple agiparas shown in Fig.1.
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Figure 1: (a) Reynolds’ experiment using water in a pipeudtransition to turbulence, (b) Typ-
ical dye streake
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If water runs through a pipe of diameter D with an averagearlo/, the following charac-
teristics are observed by injecting neutrally buoyant dyeskown. For small enough flow rates
the dye streak (a streakline) will remain as a well-definad hs it flows along, with only slight
blurring due to molecular diffusion of the dye into the sumding water. For a somewhat larger
intermediate flowrate the dye streak fluctuates in time amatespand intermittent bursts of ir-
regular behavior appear along the streak. On the other hanthrge enough flow rates the dye
streak almost immediately becomes blurred and spreadssaitr® entire pipe in a random fashion.
These three characteristics, denoted as laminar, tramsitiand turbulent flow, respectively, are
illustrated in Fig. 1b.

For pipe flow the most important dimensionless parametenaésReynolds numbeiRe =
VD/v the ratio of the inertia to viscous effects in the flow. Herite term flowrate should be
replaced by Reynolds number, where V is the average velatithe pipe. That is, the flow
in a pipe is laminar, transitional, or turbulent provide@ tReynolds number is small enough,
intermediate, or large enough. It is not only the fluid vefpthat determines the character of the
flowits density, viscosity, and the pipe size are of equalartgmnce. These parameters combine to
produce the Reynolds number.

The distinction between laminar and turbulent pipe flow asdi€épendence on an appropriate
dimensionless quantity was first pointed out by Osborne Blegrin 1883. The Reynolds number
ranges for which laminar, transitional, or turbulent pipemM$ are obtained cannot be precisely
given. The actual transition from laminar to turbulent flovayrtake place at various Reynolds
numbers, depending on how much the flow is disturbed by vdraiof the pipe, roughness of the
entrance region, and the like. For general engineeringgses (i.e., without undue precautions
to eliminate such disturbances), the following values gmgr@priate: The flow in a round pipe
is laminar if the Reynolds number is less than approximat2h0Q The flow in a round pipe
is turbulent if the Reynolds number is greater than appratety 4000 For Reynolds numbers
between these two limits, the flow may switch between lamarat turbulent conditions in an
apparently random fashion 1transitional flow).

2 Balance of Momentum - Navier-Stokes Equation

Differential form of thebalance principle of momentum (see lecture n3-equation motion) for
viscous fluid take the differential form which are called MaStokes equations (N-S). Father we
will treat the fluid as a incompressible. The vector form oSENquations are
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For viscous flow relation between the the vector of tengiott) is not like forideal (invicid)
fluid, t = —p-n, but depend also from derivativ%}. The consequences of that fact are the
Navier-Stokes equations (1).



3 Laminar flow in pipe

We will be regarded the flow in long, straight, constant dieeneections of a pipe as a fully
developed laminar flow. The gravitational effects (maseds) will be neglect. The velocity pro-
file is the same at any cross section of the pipe. Although rmst are turbulent rather than
laminar, and many pipes are not long enough to allow thenatiant of fully developed flow, a
theoretical treatment and full understanding of fully deped laminar flow is of considerable
importance. First, it represents one of the few theoretitsalous analysis that can be carried out
exactly (within the framework of quite general assumptjomghout using other ad hoc assump-
tions or approximations. An understanding of the methodnaflyssis and the results obtained
provides a foundation from which to carry out more compédatnalysis. Second, there are many
practical situations involving the use of fully developadinar pipe flow.

We isolate the cylinder of fluid as is shown in Fig. 2 and appgmtbns second la ,(g;"X) =

F«. In this case even though the fluid is moving, it is not acedleg, so tha‘-{% = 0. Thus,
fully developed horizontal pipe flow is merely a balance lestw pressure and viscous forces—the
pressure difference acting on the end of the cylinder of araand the shear stress acting on the
lateral surface of the cylinder of aream2. This force balance can be written as

py 2 — (p1—Ap)mr? —2mrlt =0

which can be simplified to give A )
p T
T )
Equation (3) represents the basic balance in forces need#ril/e each fluid particle along the
pipe with constant velocity. Since neithép are functions of the radial coordinate, it follows
that 2r /r must also be independent of r. Thatis=Cr where C is a constant. At= 0 (the
centerline of the pipe) there is no shear stress 0) . At r =D/2 (the pipe wall) the shear stress
is a maximum, denoted, thewall shear stress. HenceC = 21/D and the shear stress distribution
throughout the pipe is a linear function of the radial cooad

2T r
=2

D *)
The linear dependence ofon r is a result of the pressure force being proportionaf tthe
pressure acts on the end of the fluid cylinder; ared¥Fand the shear force being proportional to
r (the shear stress acts on the lateral sides of the cylimdea=2wl). If the viscosity were zero
there would be no shear stress, and the pressure would biebtisoughout the horizontal pipe.
The pressure drop and wall shear stress are related by

Aty

Ap D

)
A small shear stress can produce a large pressure diffeirice pipe is relatively long
(1/D>1).
Although we are discussing laminar flow, a closer considaradf the assumptions involved
in the derivation of (3),(4) and (5) reveals that these dqnatare valid for both laminar and
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Figure 2: Motion of cylindrical fluid element within a pipe

turbulent flow. To carry the analysis further we must prdsetiow the shear stress is related to
the velocity. This is the critical step that separates thayais of laminar from that of turbulent
flow—from being able to solve for the laminar flow propertiesl ot being able to solve for the
turbulent flow properties without additional ad hoc assuoms The shear stress dependence for
turbulent flow is very complex. However, for laminar flow oN&wtonian fluid, the shear stress
is simply proportional to the velocity gradient,= pdu/dy. In the notation associated with our
pipe flow, this becomes

du
= —Ha (6)

The negative sign is included to give> 0 with du/dr < O (the velocity decreases from the
pipe centerline to the pipe wall). Equations (3) and (6) @spnt the two governing laws for
fully developed laminar flow of a Newtonian fluid within a hoontal pipe. The one is Newtons
second law of motion and the other is the definition of a Newtofluid. By combining these two

equations we obtain
du Ap
&~ (an) g
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which can be integrated to give the velocity profile:

__(Ap) >
" <4u|>r+C1 ®)

whereC; is a constant. Because the fluid is viscoustitks to the pipe wall so thati = 0 at
r =D/2. ThusC; = 4R?(Ap/16ul). Hence, the velocity profile can be written as

o ()@l

whereViyex = <4—ul) is the centerline velocity.

The volume flowrate through the pipe can be obtained by iategy the velocity profile across
the pipe. Since the flow is axisymmetric about the centertimevelocity is constant on small area
elements consisting of rings of radiusind thicknesslr. Thus,

R

. R R 2 r2  r
qv:/Au dA:/O u(r)zmdrzzwmax/o [1—(§) ]rdr:Zanax [5—@] (10)

or or pressure drops

0

= R a1

By definition, the average velocity is the flowrate dividedthg cross-sectional areé,= ¢,/ R
so that for this flow

~ Vimax ApR?
V= 2  8ul (12)
and
R*Ap
Qv = 78u| (13)

Equation (13) is commonly referred to Hagen-Poiseuille’daw.

For horizontal pipe the flowrate is:

« directly proportional to the pressure drop

* inversely proportional to the viscosity

« inversely to the pipe length

« proportional to the pipe radius to tfieurth power (~ R*)

Recall that all of these results are restricted to laminav ftbose with Reynolds numbers less
than approximately 2100) in a horizontal pipe.
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3.1 Friction factor for laminar flow

From Darcy-Weisbach

P LV
P9 D 29
we have Ab D
p
f= — 14
Equation (12) can be rearrange to obain
~8uvl 32uv /L
AP="m = (5) (15)
Inserting (15) to (14) one obtain
64
f= Re (16)

During this course | will be used the following books:
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