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1 Laminar or turbulent flow

The flow of a fluid in a pipe may be laminar flow or it may be turbulent flow. Osborne Reynolds
(18421912), a British scientist and mathematician, was thefirst to distinguish the difference be-
tween these two classifications of flow by using a simple apparatus as shown in Fig.1.

Figure 1: (a) Reynolds’ experiment using water in a pipe to study transition to turbulence, (b) Typ-
ical dye streake
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If water runs through a pipe of diameter D with an average velocity V, the following charac-
teristics are observed by injecting neutrally buoyant dye as shown. For small enough flow rates
the dye streak (a streakline) will remain as a well-defined line as it flows along, with only slight
blurring due to molecular diffusion of the dye into the surrounding water. For a somewhat larger
intermediate flowrate the dye streak fluctuates in time and space, and intermittent bursts of ir-
regular behavior appear along the streak. On the other hand,for large enough flow rates the dye
streak almost immediately becomes blurred and spreads across the entire pipe in a random fashion.
These three characteristics, denoted as laminar, transitional, and turbulent flow, respectively, are
illustrated in Fig. 1b.

For pipe flow the most important dimensionless parameter is the Reynolds number,Re =
V D/ν the ratio of the inertia to viscous effects in the flow. Hence,the term flowrate should be
replaced by Reynolds number, where V is the average velocityin the pipe. That is, the flow
in a pipe is laminar, transitional, or turbulent provided the Reynolds number is small enough,
intermediate, or large enough. It is not only the fluid velocity that determines the character of the
flowits density, viscosity, and the pipe size are of equal importance. These parameters combine to
produce the Reynolds number.

The distinction between laminar and turbulent pipe flow and its dependence on an appropriate
dimensionless quantity was first pointed out by Osborne Reynolds in 1883. The Reynolds number
ranges for which laminar, transitional, or turbulent pipe flows are obtained cannot be precisely
given. The actual transition from laminar to turbulent flow may take place at various Reynolds
numbers, depending on how much the flow is disturbed by vibrations of the pipe, roughness of the
entrance region, and the like. For general engineering purposes (i.e., without undue precautions
to eliminate such disturbances), the following values are appropriate: The flow in a round pipe
is laminar if the Reynolds number is less than approximately2100. The flow in a round pipe
is turbulent if the Reynolds number is greater than approximately 4000. For Reynolds numbers
between these two limits, the flow may switch between laminarand turbulent conditions in an
apparently random fashion 1transitional flow).

2 Balance of Momentum - Navier-Stokes Equation

Differential form of thebalance principle of momentum (see lecture n3-equation motion) for
viscous fluid take the differential form which are called Navier-Stokes equations (N-S). Father we
will treat the fluid as a incompressible. The vector form of N-S equations are

∂v
∂ t

+v ·∇v = −
1
ρ

∇p+ ν∆v (1)

∇ ·v = 0 (2)

For viscous flow relation between the the vector of tensiont(x, t) is not like for ideal (invicid)
fluid, t = −p · n, but depend also from derivatives∂vi

∂v j
. The consequences of that fact are the

Navier-Stokes equations (1).

2



3 Laminar flow in pipe

We will be regarded the flow in long, straight, constant diameter sections of a pipe as a fully
developed laminar flow. The gravitational effects (mass forces) will be neglect. The velocity pro-
file is the same at any cross section of the pipe. Although mostflows are turbulent rather than
laminar, and many pipes are not long enough to allow the attainment of fully developed flow, a
theoretical treatment and full understanding of fully developed laminar flow is of considerable
importance. First, it represents one of the few theoreticalviscous analysis that can be carried out
exactly (within the framework of quite general assumptions) without using other ad hoc assump-
tions or approximations. An understanding of the method of analysis and the results obtained
provides a foundation from which to carry out more complicated analysis. Second, there are many
practical situations involving the use of fully developed laminar pipe flow.

We isolate the cylinder of fluid as is shown in Fig. 2 and apply Newtons second law,d(mvx)
dt =

Fx. In this case even though the fluid is moving, it is not accelerating, so thatd(mvx)
dt = 0. Thus,

fully developed horizontal pipe flow is merely a balance between pressure and viscous forces–the
pressure difference acting on the end of the cylinder of areaπr2 and the shear stress acting on the
lateral surface of the cylinder of area 2πrl. This force balance can be written as

p1 πr2
− (p1−∆p)πr2

−2πrlτ = 0

which can be simplified to give
∆p
l

=
2τ
r

(3)

Equation (3) represents the basic balance in forces needed to drive each fluid particle along the
pipe with constant velocity. Since neither∆p are functions of the radial coordinate,r , it follows
that 2τ/r must also be independent of r. That is,τ = Cr where C is a constant. Atr = 0 (the
centerline of the pipe) there is no shear stress (τ = 0) . At r = D/2 (the pipe wall) the shear stress
is a maximum, denotedτw thewall shear stress. Hence,C = 2τ/D and the shear stress distribution
throughout the pipe is a linear function of the radial coordinate

τ =
2τwr

D
(4)

The linear dependence ofτ on r is a result of the pressure force being proportional tor2 (the
pressure acts on the end of the fluid cylinder; area=πr2) and the shear force being proportional to
r (the shear stress acts on the lateral sides of the cylinder;area=2πrl). If the viscosity were zero
there would be no shear stress, and the pressure would be constant throughout the horizontal pipe.
The pressure drop and wall shear stress are related by

∆p =
4lτw

D
(5)

A small shear stress can produce a large pressure differenceif the pipe is relatively long
(l/D ≫ 1).

Although we are discussing laminar flow, a closer consideration of the assumptions involved
in the derivation of (3),(4) and (5) reveals that these equations are valid for both laminar and
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Figure 2: Motion of cylindrical fluid element within a pipe

turbulent flow. To carry the analysis further we must prescribe how the shear stress is related to
the velocity. This is the critical step that separates the analysis of laminar from that of turbulent
flow–from being able to solve for the laminar flow properties and not being able to solve for the
turbulent flow properties without additional ad hoc assumptions. The shear stress dependence for
turbulent flow is very complex. However, for laminar flow of aNewtonian fluid, the shear stress
is simply proportional to the velocity gradient,τ = µdu/dy. In the notation associated with our
pipe flow, this becomes

τ = −µ
du
dr

(6)

The negative sign is included to giveτ > 0 with du/dr < 0 (the velocity decreases from the
pipe centerline to the pipe wall). Equations (3) and (6) represent the two governing laws for
fully developed laminar flow of a Newtonian fluid within a horizontal pipe. The one is Newtons
second law of motion and the other is the definition of a Newtonian fluid. By combining these two
equations we obtain

du
dr

= −

(

∆p
2µ l

)

(7)
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which can be integrated to give the velocity profile:

u = −

(

∆p
4µ l

)

r2 +C1 (8)

whereC1 is a constant. Because the fluid is viscous itsticks to the pipe wall so thatu = 0 at
r = D/2. Thus,C1 = 4R2(∆p/16µ l). Hence, the velocity profile can be written as

u(r) =

(

∆pR2

4µ l

)[

1−
( r

R

)2
]

= Vmax

[

1−
( r

R

)2
]

(9)

whereVmax =
(

∆pR2

4µl

)

is the centerline velocity.

The volume flowrate through the pipe can be obtained by integrating the velocity profile across
the pipe. Since the flow is axisymmetric about the centerline, the velocity is constant on small area
elements consisting of rings of radiusr and thicknessdr. Thus,

qv =
∫

A
u dA =

∫ R

0
u(r)2πrdr = 2πVmax

∫ R

0

[

1−
( r

R

)2
]

rdr = 2πVmax

[

r2

2
−

r4

4R2

]∣

∣

∣

∣

R

0
(10)

or or pressure drops

qv = πR2Vmax

2
(11)

By definition, the average velocity is the flowrate divided bythe cross-sectional area,V = qv/πR2

so that for this flow

V =
Vmax

2
=

∆pR2

8µ l
(12)

and

qv =
πR4∆p

8µ l
(13)

Equation (13) is commonly referred to asHagen-Poiseuille’slaw.'

&

$

%

For horizontal pipe the flowrate is:

• directly proportional to the pressure drop

• inversely proportional to the viscosity

• inversely to the pipe length

• proportional to the pipe radius to thefourth power (∼ R4)

Recall that all of these results are restricted to laminar flow (those with Reynolds numbers less
than approximately 2100) in a horizontal pipe.
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3.1 Friction factor for laminar flow

From Darcy-Weisbach

hL =
∆p
ρg

= f
L
D

v2

2g

we have

f =
∆p

1
2ρV 2

D
L

(14)

Equation (12) can be rearrange to obain

∆p =
8µV l

R2 =
32µV

D

(

L
D

)

(15)

Inserting (15) to (14) one obtain

f =
64
Re

(16)

During this course I will be used the following books:
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