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1 Viscous flows in pipes

Our intension here is generalized the one-dimensional Bernoulli equation for viscous flow. When
the viscosity of the fluid is taken into account total energy headH = v2

2g + p
ρg + z is no longer

constant along the pipe. In direction of flow, due to frictioncause by viscosity of the fluid we

havev2
1

2g + p1
ρg + z1 >

v2
2

2g + p2
ρg + z2. So to restore the equality we must add some scalar quantity to

the right side of this inequality

v2
1

2g
+

p1

ρg
+z1 =

v2
2

2g
+

p2

ρg
+z2 + ∆hls (1)

This scalar quantity∆ls is called ashydraulic loss. The hydraulic loss between two different cross
section along the pipe is equal to the difference of total energy for this cross section:

∆hls = H1−H2 (2)

We must remember that alwaysH1 > H2. In horizontal pipe whenz1 = z2 and diameter of pipe is
constantv1 = v2 hydraulic loss is equal to the head of pressure drop orhead loss

∆hL =
p1− p2

ρg
(3)

Head loss is express by Darcy -Weisbach equation:

hL = f
L
D

v2

2g
(4)
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Figure 1: Pipe friction loss. For horizontal pipe, with constant diameter this loss may be measured
by height of the pressure drop:∆p

ρg = h

We must remember that equation (4) is valid only for horizontal pipes. In general, withv1 = v2

but z1 6= z2, the head loss is given

p1− p2

ρg
= (z2−z1)+ f

L
D

v2

2g
(5)

Part of the pressure change is due to elevation change and part is due to head loss associated
with frictional effects, which are given in terms of thefriction factor f that depends on Reynolds
number and relative roughnessf = ϕ(Re,ε/D).

It is not easy to determine the functional dependence of the friction factor on the Reynolds
number and relative roughness(ε/D). Much of this information is a result of experiments con-
ducted by J. Nikuradse in 1933 and amplified by many others since then. One difficulty lies in
the determination of the roughness of the pipe. Nikuradse used artificially roughened pipes pro-
duced by gluing sand grains of known size onto pipe walls to produce pipes with sandpaper-type
surfaces. In commercially available pipes the roughness isnot as uniform and well defined as in
the artificially roughened pipes used by Nikuradse. However, it is possible to obtain a measure of
the effective relative roughness of typical pipes and thus to obtain the friction factor. Figure (3))
shows the functional dependence off on Reand and is called theMoody chart in honor of L. F.
Moody, who, along with C. F. Colebrook, correlated the original data of Nikuradse in terms of the
relative roughness of commercially available pipe materials.

1.1 Moody Chart

The following characteristics are observed from the data of(3). For laminar flow,Re< 2300,f =
64/Re, which is independent of relative roughness. For very largeReynolds numbers,f = ϕ(ε/D)
which is independent of the Reynolds number. For such flows, commonly termedcompletely
turbulentflow, along the wall pipe, exists the laminar sublayer so thinthat the surface roughness
completely dominates the character of the flow near the wall.The gap in the figure for which no
values off are given, 2100< Re< 4000, is a result of the fact that the flow in this transition range
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Figure 2: Flow near rough and smooth walls

may be laminar or turbulent (or an unsteady mix of both) depending on the specific circumstances
involved.

Note that even for smooth pipes the friction factor is not zero. That is, there is a head loss in any
pipe, no matter how smooth the surface is made. This is a result of the no-slip boundary condition
that requires any fluid to stick to any solid surface it flows over. There is always some microscopic
surface roughness that produces the no-slip behavior (and thus f 6= 0) on the molecular level, even
when the roughness is considerably less than the viscous sublayer thickness. Such pipes are called
hydraulically smooth. Various investigators have attempted to obtain an analytical expression for
f = ϕ(Re,ε/D). Note that the Moody chart covers an extremely wide range in flow parameters.
The non-laminar region covers more than four orders of magnitude in Reynolds number from
Re= 4 · 103 to Re= 108. Obviously, for a given pipe and fluid, typical values of the average
velocity do not cover this range. However, because of the large variety in pipesD, fluids (ρ, andµ
and and velocities (v), such a wide range in Re is needed to accommodate nearly all applications
of pipe flow.
Colebrook combined all data for transition and turbulent flow in smooth as well as rough pipes
into the following relation known asColebrook equation

1√
f

= −2.0 log

(

ε/D
3.7

+
2.51

Re
√

f

)

(6)

The Colebrook equation is implicit inf , and determination of friction factor requires tedious
iteration. An approximate explicit relation forf is given by S.E. Haaland in 1983 as

1√
f

= −1.8 log

[

6.9
Re

+

(

ε/D
3.7

)1.11
]

(7)
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Figure 3: Friction factor as a function of Reynolds number and relative roughness for round pipes
-theMoody chart

For hydraulically smooth pipe the friction factor is approximated by Blasius (1911) formula

f = (100Re)−1/4 (8)

The next formula proposed by Aldsul(1952) gained some popularity in the engineering appli-
cation due to its simplicity:

f = 0,11(
ε
D

+
68
Re

)1/4 (9)

It is clear that in order to use the Moody diagram we must be able to obtain values of surface
roughness. These have been measured and tabulated (and sometimes plotted) for an extensive
range of materials used in piping systems. Table 1 provides some representative values.

Table 1. Surface roughness values for various engineering materials

PIPING MATERIAL ROUGHNESSε mm
Cast iron 0.26
Commercial steel and wrought iron 0.045
Concrete 0.3-3.0
Drawn tubing 0.0015
Galvanized iron 0.15
Plastic,(and glass) 0.0 (smooth)
Riveted steel 0.9-9.0
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We must remember that the values in table typically used, arenot actual measured ones, but are
instead the result of data correlations constructed over a range of measurements. They are some-
times referred to as ”equivalent” roughnesses; it is usefulto consider them as simply representative
values.

1.2 Types of Fluid Flow Problems

In the design and analysis of piping systems that involve theuse of the Moody chart, we usually
encounter three types of problems:

1. Determining thepressure dropwhen the the pipe length and diameter are given for a spec-
ified flow rate ( or velocity)

2. Determining theflow rate when the the pipe length and diameter are given for a specified
pressure drop

3. Determining thepipe diameter when the pipe length and flow rate are given for a specified
pressure drop.

Example 1. Oil, with ρ = 900kg/m3 and kinematic coefficient of viscosityν = 0,00001m2/s,
flows at qv = 0,2m3/s through500m of200-mm diameter cast-iron pipe. Determine (a) the head
loss and (b) the pressure drop if the pipe slopes down at 10 in the flow direction.
Solution. First we compute the Reynolds number Re= V ·d/ν = 4 ·qv/(πdν) = 4 · 0,2/(3,14·
0,2 ·0,00001) = 128000. Velocity is equal to v= qv/(

πd2

4 ) = 6.4 m/s. Absolute roughness for
iron-cast pipe isε = 0.26 mm. So relative roughness isε = ε

d = 0,0013. Now we are able to
calculate using the formula(10) or Moody chart, friction factor f = 0,0225. Then the head loss is

hf = f
L
d

v2

2g
= 0,0225

500
0.2

6,42

2·9,81
= 117m

For inclined pipe the head loss is

hf =
∆p
ρg

+z1−z2 =
∆p
ρg

+Lsin10o.

So pressure drop is

∆p = ρg(hf −500·sin10o) = 900·9,81· (117−87) = 265·103.

Example 2. Oil, with ρ = 950 kg/m3 and 6== 2E−5 m2/s, flows through a30− cm-diameter
pipe 100 m long with a head loss of 8 m. The roughness ratio isε/d = 0.0002. Find the average
velocity and flow rate.
Iterative Solution. To start we need to guess f . A good first guess is the ”fully rough” value
(wholly turbulent) forε/d = 0.0002from Moody chart. It is f≈ 0.015. Now from Darcy-Weisbach
formula (4) we have

hf = f
L
D

v2

2g
⇒ f v2 = 0.471
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f ≈ 0.015 v =
√

0.471/0.014= 5.8 m/s Re= vd/ν ≈ 87000
fnew(87000) = 0.0195 v =

√

0.471/0.0195= 4.91 m/s Re= vd/ν ≈ 73700
fnew(73700) = 0.0201 v =

√

0.471/0.0201= 4.84 m/s Re= vd/ν ≈ 72600

f (72600) = 0.0201, so we can accept v= 4,84 m/s, qv = v(πd2

4 ) = 0,342m3/s.

1.3 Minor losses

For any pipe system, in addition to the Moody-type friction loss computed for the length of pipe.
Most pipe systems consist of considerably more than straight pipes. These additional components
add to the overall head loss of the system. Such losses are generally termedminor losses, with
the apparent implication being that the majority of the system loss is associated with the friction
in the straight portions of the pipes, themajor lossesor local losses. In many cases this is true. In
other cases the minor losses are greater than the major losses. The minor losses may raised by

1. Pipe entrance or exit

2. Sudden expansion or contraction

3. Bends, elbows, tees, and other fittings

4. Valves,open or partially closed

5. Gradual expansions or contractions

Themajor lossesmay not be so minor; e.g., a partially closed valve can cause agreater pressure
drop than a long pipe. The losses are commonly measured experimentally. The data, especially
for valves, are somewhat dependent upon the particular manufacturers design.
The most common method used to determine these head losses orpressure drops

hL =
∆p
ρg

= KL
v2

2g
(10)

whereKL means(local) loss coefficient. AlthoughKL is dimensionless, it is not correlated in the
literature with the Reynolds number and roughness ratio butrather simply with the raw size of the
pipe. Almost all data are reported for turbulent-flow conditions.

Example 3. Find (see figure 5.)

1. the discharge through the pipeline as in figure for H=10 m

2. determine the head loss H1 for qv = 60 l/s.

D = 0.15m, ε
D = 0,0017, ν = 1,01·10−6.

Solution. The energy equation applied between points 1 and 2 includingall the losses, can be
written as

H1 =
v2

2g
+ f

L
D

v2

2g
+(K1+K2+K3+K4)

v2

2g
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Figure 4:

where K1 = 0,5 is entrance loss coefficient,K2,K3 = 0,9 as a standard elbow, and K4 = 10 for
globe valve fully open. Putting the values tot the above formula one obtain

H1 =
v2

2g
(13,3+680 f )

To start we need to guess f . A good first guess is the ”fully rough” value (wholly turbulent) for
ε/d = 0,0017from Moody chart. It is f≈ 0,022. Now from Darcy-Weisbach formula (4) we have

10=
v2

2g
(13,3+680 0,022) ⇒ v2 = 2.63, Re= 391000

f ≈ 0,023 v = 2,6 m/s Re= vd/ν ≈ 380000
fnew(380000) = 0,023 v = 2,6 m/s Re= vd/ν ≈ 380000
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Figure 5: Pipeline with minor losses

We accepted v= 2,60 m/s, qv = v(πd2

4 ) = 45,9·10−3 m3/s.
For the second part, with qv known, the solution is straightforward:

v2 =
qv

A
=

0.06
π0.152

4

= 3.40 m/s, Re= 505000, f = 0.023

and

H1 =
3,42

2·9,81
(13,3+680 0,023) = 17,06 m

Example 4. Flow between two reservoirs. Water at10oC flow from a large reservoir to a small
one through a 5-cm-diameter cast iron piping system shown infigure (6). Determine the elevation
z1 for the flow rate of6l/s.

Figure 6:

(Answer. 27,9 m)
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During this course I will be used the following books:
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