The vortex-in-cell method for the study
of three-dimensional vortex structures

Henryk KUDELA, Pawel REGUCKI

Wroctaw University of Technology,
Wybrzeze Wyspiariskiego 27, 50-370 Wroctaw, Poland

kudela®fluid.itcmp.pwr.wroc.pl, regucki@fluid.itcmp.pwr.wroc.pl

Abstract The vortex particle method for numerical simulation of the 3D vortex
structure evolution was used. Validation of the method was tested for the study of a
single vortex ring by comparing the computed translation velocity with the theoretical
formula and for the leap-frogging phenomenon for two rings with the same circulation.

Our paper is clear as a bell

On the method of vortez-in-cell;
For vortical strings
And leap-frogging rings

The method works plausibly well.

1. Introduction

Vorticity plays a fundamental role in all real fluid dynamic phenomena
and for this reason the vortex method in the study of the fluid dynamics
cannot be overestimated. In computation the “vortex particle” permits
direct tracing for the evolution of the vorticity. Now it seems that the
2D vortex particle method is well grounded in that many numerical and
theoretical results have been obtained (Ould Salihi & at al 2000, Kudela
1999). On the other hand, the 3D vortex method must still be developed.
Generally the vortex method can be divided on the direct, free grid
method based on the Biot-Savart law (Leonard 1985, Knio & Ghoniem
1990, Winckelmans & Leonard 1993) and vortex-in-cell methods where a,
grid is used for the velocity calculation but particles are used to track the
vorticity (Christiansen 1973, Zawadzki & Aref 1991, Cottet 2000). The
vortex-in-cell method is much faster then the free grid vortex method.
Despite the fact that vorticity is divergence free, we introduced to the
computation a vector particle that carries the “mass” of the vorticity.
We are going to build a 3D program for the simulation of the viscous
fluid flow using the vortex-in-cell method. Components that must be
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included in such a program should be: a Euler inviscid solution of the
flow by the vortex particles and a numerical procedure that takes into
account the viscosity of the fluid (Cottet 2000). Here we present our
primary results that relate to the inviscid Euler equations.

2. Equation of motion and description of the
computational algorithm

The equations that described the evolution of the vorticity in the
inviscid and incompressible three-dimensional space are:

%—fﬂﬁ.vm:(a-vm (1)

Vi =0 (2)

where & = (wy, wy, ws) is the vorticity vector and @ = (w1, ug,us) is the
velocity. Now in agreement with the spirit of the vortex-in-cell method,
the distribution of the vorticity is replaced by a discrete distribution of
Dirac delta measures:

N
B(7) = ) dp (7 — ) (3)
p=0

where @, means vector particle &, = (o1, apa, ap3) at position &, =
(Zp1, Zp2, Tp3). When the domain of the flow is covered by the numerical
mesh (N, x N, x IN,) with equidistant spacing h, then the i-component
of the vector particle ¢, is:

o = /wfi(IElaiEQ,JJB)df?ti lz3wi(fp):- i, eV,, |Vl= W (4)
Vp

Equation (2) assures the existence of vector potential A which relates
the vorticity distribution to the velocity field:

i = VxA (5)

where the components of vector potential A are obtained by the solution
of the Poisson equations (it was assumed that V- A = 0):

AAi = — Wy, = 1.}2,3. (())

The numerical calculation goes as follows:
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1) To solve equations (6) on the numerical mesh the strength of par-
ticles @, must be redistributed on the mesh nodes (I, m,n):

1 R - :
h3 =

where for ¢ we used the B-spline of the first order (it is equivalent to
the volume-weighted scheme and influenced only 8 nodes). After the
redistribution, equations (6) were solved by the fast Poisson solver. We
used the periodic boundary conditions.

2) Using (5), the velocities at the grid nodes were computed by the
central difference. The particles were advanced in time employing the
Runge-Kutta scheme:

E— = ’Jp. (8)
The velocity i, was computed from the grid nodes velocities by inter-
polation. We used the second order interpolator from the Fortran IMSL
library.

3) Due to the vorticity stretching effect, in the new position the
strength of the particles was updated:

doy  Oui(Ty) du;(Tp) Ou; (Zp)
d - om T ® 5, % g

i=1,2,3. (9)

The derivatives of the velocity were interpolated from the grid nodes
on the position of the particles. For the solution of (9) we used the 4-
order Adams-Bashforth scheme. This completes one time step and the
calculation returns to step 1.

3. Examples of the numerical results

At first we used our program to test the motion of a single ring with
uniform vorticity inside the core. The translation velocity Ur is given
by the the formula (Lim & Nickels 1995, Saffman 1993):

Up = Lr%{log (%) = i + 0(%)} (10)

where ¢ - radius of the core, R - radius of the ring, ' - circulation. For
our calculation we took domain 10 x 10 x 10 and grid step h = 0.1,
' = 1.0. ¢ = 0.3, R = 1.5. The time step was used as At = 0.005.
The ring was divided into 100 slices. and in each slice the vorticity
was redistributed between 100 particles (I'-h =~ > ), - 7 where

. . s . : D)
the summation is made for the particles that arc in volume (h-m-e),
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Iigure 1. a) coordinate svstem with the vortex ring; (b) vortex ring that was
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divided by one hundred slices; (¢) initial position of the particles at a single slice.
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Figure 2. The sequence of the vortex ring position that are visualised by the par-

ticles. Each particle is represented by the dot.

7 - means a unit vector normal to the slice). For these parameters the
velocity obtained from formula (10) is ~ 0.187 and it is necarly the same
as the translation velocity for the ring in Figure 2. In Figure 3 we tried to
simulate the motion of two rings with the same circulation that created
the “vortex leap-frogging” phenomenon (Lim & Nickels 1995). We found
that the evolution of two vortex rings strongly depends on their initial
positions and parameters. In Figure 4 the initial position of the first
ring was closer to the larger one and its diameter was smaller than in
Figure 3. Qualitative changes in evolution between Figures 3 and 4 are
clearly visible. The smaller ring passes through the larger one and starts
to roll-up around the larger one producing the “tail”. Qualitatively the

pictures resemble the experimental one published in Shariff & Leonard
(1992).

4. Closing remarks

It seems that the particle vortex method for 3D flow gives reasonable
results and may be very useful for the simulation of the viscous 3D flow.
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Figure 3. Time evaluation of |w| surface of the leap-frogging of the vortex rings,
number of particles was 2 x 10000 (10000 for one ring).

Figure 4. The sequence of the time position of the vortex particles for the motion
of the two rings with the same circulation I' = 1.
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During our calculations we monitored the kinetic energy £ = [ u?dZ,
helicity H = [ & - @ dZ. For the single ring H ~ 10~7. For the case
of “vortex game” (Figure 3) H changed from 0 to H =~ 10~2, for the
case from Figure 4 final helicity was H ~ 10~*. Energy for the single
ring (Figure 2) changed less then 1% but for the case from Figure 4
energy changed nearly about 40 %. We suspect that using a smoother
redistribution of the “mass vorticity” (Cottet 2000) on the grid nodes
will improve the results.
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