3.5b SIMULATION VISKOSER STRÖMUNGEN

KUDELA, H.

Study of the Motion of the Two-Dimensional Bubble by the Vortex Method

MSC (1980): 76E99 76B99 65C20

Akademie Verlag

1. Introduction

One of the most important problems within the general area of pattern formation and bubbles (drops) mechanics concerns interface deformation. Special interest is paid to creating pattern formation of unstable flows [1]. In this paper our interest concerns the evolution of the two-dimensional bubble (closed interface) between two media with different densities under the action of gravity. When a heavy fluid is placed above a lighter one in the gravitational field Rayleigh-Taylor instability occurs. We adopted a relatively simple model: the fluid is assumed inviscid, immiscible and incompressible; its density is constant in a region separated by a close curved. The flow is two-dimensional and irrotational except at a sharp interface. Thus the interface can be regarded as a vortex sheet. Investigation of the interface motion can be expressed as an initial value problem and reduced to following a curve that moves with its own induced velocity. To simplify the numerical procedure we accepted the fact that density variations are small. This allowed us to significantly simplify the evolution equation for the vortex sheet strength and enabled us to avoid some problems related to nonlinearity of this equation [6]. Instead of Fredholm integral equation of second kind a simply differential equation had to be solved [4]. But the case still has practical interest e.g. in the study of motion of a thermal [2]. For the solution of the initial value problem we used the generalized vortex method described by BAKER, MARION, ORSZAG [4], [5] and BAKER [3]. It is known that the initial value problem for the vortex sheet is ill-posed in the Hadamard sense (at a finite time solution yields singularity [8], [6]). To regularize the problem KRAUS [7] modified the Biot-Savart formula by introducing δ^2-parameter and in such a way that the singular integrand is replaced by a smooth one. Although the introduction of δ^2 is a quite formal procedure KRAUS showed [7] that for the linearized δ^2-equation, short-wave-length behavior (its growth rate) is similar to the effect which the viscosity plays in the linearized Rayleigh-Taylor problem. For this reason, one can interpret the introduction of the δ^2-parameter as the trial to mimics of fluid viscosity.

2. The equation of motion

The interface was described parametrically $(x(e, \theta), y(e, \theta))$ where t is the time and e a real parameter $e \in [0, 1]$ which was used also as a Lagrangian variable. At the initial instant the e value marks the point on the interface that allows following the motion of the interface. The initial shape of the bubble was described by ellipse equation $(x(e, 0) = a \cos(2\pi e), y(e, 0) = b \sin(2\pi e))$ where a and b are large and small axes of the ellipse. Moreover the ellipse can be rotated on θ angle where θ is the angle between the large axis of the ellipse a and the horizontal axis x. So initial position and shape of bubble can be characterized by θ angle and the ratio $s = b/a$. Further, except the case of cylinder motion ($s = 1$), we presented results only for the evolution of the ellipse with $s = 1/3$, $a = 1$ and the different θ angle. By virtue of the Biot-Savart formula and Bussinesq approximation δ^2-equations for velocity and equation for the evolution of the vortex sheet...
strength are:

\[
\frac{\partial x}{\partial t} = -\frac{1}{2\pi} \int_0^1 \frac{\gamma(e', t) (y(e, t) - y(e', t))}{r^2 + \delta^2} \, de',
\]

(1)

\[
\frac{\partial y}{\partial t} = \frac{1}{2\pi} \int_0^1 \frac{\gamma(e', t) (x(e, t) - x(e', t))}{r^2 + \delta^2} \, de'.
\]

(2)

\[
\frac{\partial \delta}{\partial t} = 2 \frac{\partial \gamma}{\partial e},
\]

(3)

where \(r^2 = (x(e, t) - x(e', t))^2 + (y(e, t) - y(e', t))^2 \); \(\gamma(e, t) \) is the sheet strength for the Lagrangian variable [5]. The units used in (1)-(3) are such that the length is scaled by \(a \) and time by \((a/Ag)^{1/2} \) where \(A = (\varrho - \varrho_0)/(\varrho_0 + \varrho_1) \) is the so-called Atwood number and \(\varrho_1 \) is the density of the ambient fluid, \(\varrho_0 \) is the density of the fluid in the bubble. In the Boussinesq limit \(A \to 0 \), \(g \to \infty \) such that \(Ag \) remains constant (g-acceleration due to gravity). The numerical procedure is as follows: for \(x(e, t), y(e, t), \gamma(e, t) \) (initially \(\gamma(e, 0) = 0 \)), the interface is marched forward using (1), (2) and next also \(y(e, t) \) is marched forward from (3). The Adam-Multon predictor corrector scheme of fourth-order was used for solution of (1), (2), (3). To start calculations the Runge-Kutta (RKF45) algorithm was used. The derivative with respect to the Lagrangian variable \(e \) was calculated by cubic spline. Integrals were evaluated using trapezoidal rules on an alternate set of points [3]. Calculation was carried out on an IBM PC-386 computer in double precision arithmetic using RMFORTRAN. For checking accuracy the two invariant of the motion was monitored: mass of the bubble and mass flux through interface. When the relative error was greater then 0.05 the calculation was stopped. The time step and the number of vortices were chosen experimentally and it was accepted \(\Delta t = 0.005 \), and \(N = 300 \).

3. Numerical results

3.1 Motion of cylindrical bubble

The vortex study of this case has already been done by Anderson (but by another vortex method) [2] and Meng, Thomson [9]. We repeated the calculation for rise of a buoyant cylinder (or a thermal) to gain the understanding of \(\delta^2 \) influence. Fig. 1 shows the sequence of the solutions for evolving the cylindrical bubble for \(\delta^2 = 0.01 \). The creation of two vortices

![Fig. 1. Successive stages in the evolution of cylindrical bubble with \(\delta^2 = 0.01 \). The time is indicated on the right of each frame](image)

![Fig. 2. Effect of \(\delta^2 \) value. Interface at \(t = 3.5 \), \(\delta^2 \) value as shown](image)
with spiral structure on both sides of the vertical axis of symmetry is clearly visible. The rate of change of the total vorticity in one half of the curve is measured by the thickness Δy of the cap on the axis of symmetry (integration of (3) with respect to ϵ in the interval $[0, 0.5]$ gives $\frac{\delta}{\delta t} \int_0^{\Delta y} \gamma = 2\Delta y$). To illustrate the influence of the value of δ^2 in Fig. 2 we showed the solutions with different δ^2 in the same time. One can see that while large scales of bubble suffer only slight changes the spiral structure becomes more and more complicated (has more turns) when δ^2 is decreased. Fig. 3a presents the velocity of the upper point of the bubble (on the symmetry axis) vs. time and in Fig. 3b the thickness of the cap vs. time for $\delta^2 = 0.1$ and 0.01 (graphs for $\delta^2 = 0.04$ and 0.02 laid between these two curves). Fig. 3a suggests that the limit for velocity of the upper point of the bubble exists independently from δ^2 value. Greater value of the δ^2 (more "viscous" fluids) causes slower raising of velocity (Fig. 3a) and drops the rate of total change vorticity more quickly (Fig. 3b).

3.2 Motion of elliptical bubble

Fig. 4 shows the evolution of a bubble for $\delta^2 = 0.02$, and $\theta = 60^\circ$. At first one may be surprised that a tail structure has developed. The tail starts to come out at the point where $\partial y / \partial t = 0$ so from (3) we see that the production of the vortex

![Fig. 4. Successive stages in the evolution of elliptical bubble with $\theta = 60^\circ$, $\delta^2 = 0.02$. The time is indicated on the right of each frame](image)

![Fig. 5. Close-up of the frame for $t = 2.125$ from Figure 4. The points on the interface indicate the positions of markers moving with Lagrangian velocity](image)
Fig. 6. Successive stages in the evolution of elliptical bubble with $\theta = 90^\circ$, $\delta^2 = 0.04$. The time is indicated on the right of each frame.

Fig. 7. Successive stages in the evolution of elliptical bubble with $\theta = 60^\circ$, $\delta^2 = 0.04$. Strength has an extremum. The tail (fluid thread) is stretched and its thickness at some point goes to zero (at this point probably the tail will be separated from the bubble). Ambient fluid enter into the bubble near the base tail where the interface begins to develop in complex, fine structure. This fine structure around the base of the tail did not appear when the δ^2 parameter was increased ($\delta^2 = 0.04$ see Fig. 7). The tail ends in a spike. The upper part of the bubble tends to form a circular shape. A close-up frame for $t = 2.125$ from Fig. 4 was shown in Fig. 5. The point on the interface indicates the positions of the vortices. In Fig. 6, 7, 8, 9 we presented the evolution of the bubble for $\theta = 90^\circ$, 60$^\circ$, 45$^\circ$, 30$^\circ$ respectively ($s = 1/3$) and $\delta^2 = 0.04$. In all cases we can see the same similarities but we can see also some differences especially in the evolution of the tail. In Fig. 9 at final stage of the evolution we have only two ends of the bubble and the tail is not ended with spike (for $\theta = 0$, $s = 0.333$ the evolution goes similar to that in Fig. 1).

Fig. 8. Successive stages in the evolution of elliptical bubble with $\theta = 45^\circ$, $\delta^2 = 0.04$.

Fig. 9. Successive stages in the evolution of elliptical bubble with $\theta = 30^\circ$, $\delta^2 = 0.04$.
4. Closing remarks

As it is suspected, the evolution of the bubble in an unstable flow (Rayleigh-Taylor instability) is sensitive to initial conditions (shape). Development of tails, spikes and whirls are typical entities which can be noticed in the evolutions of the forms in unstable flows [1]. Despite of our two-dimensional flows the quantitative results are similar to those presented by POZIKELS [10] for spherical drops. The δ^2-parameter mimics the viscosity of the fluids: greater (more "viscous") value of δ^2 prevent the evolution of very complicated shapes of the interface and change timescale of deformations. It is clear that the evolution of the bubble will be sensitive to b/a ratio. When this ratio is large enough ($b/a > 0.5$) the evolution will resemble the one Fig. 1 or 9.

References

Address: Dr. HENRYK KUDIELA, Technical University of Wroclaw, Institute of Heat Engineering and Fluid Mechanics, 50-370 Wroclaw, Wybrzeze, Wyspianskiego 27, Poland

PERKOLD, K.; HILBERT, D.; SIEKMANN, J.

Numerische Untersuchung der pulsatilen Strömung eines nicht-Newtonsschen Fluides in einem elastischen Rohr

MSC (1980); 76A05

Die betrachtete Strömung wird durch die Navier-Stokes-Gleichungen für inkompressible, verallgemeinerte Newtonsche Fluide beschrieben. In der Spannungs-Divergenz-Formulierung gilt für den rotationssymmetrischen Fall (r, θ, z)

\begin{align}
\rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) + \nabla \cdot \mathbf{p} = -\nabla \tau_{rr} - \nabla \tau_{\theta \theta} - \nabla \tau_{z z} - \frac{1}{r} \left(\tau_{rr} - \tau_{\theta \theta} \right) = 0 \quad (1), \\
\rho \left(\frac{\partial \mathbf{v}}{\partial z} + \mathbf{u} \cdot \nabla \mathbf{v} \right) + \nabla \cdot \mathbf{p} = -\nabla \tau_{rr} - \nabla \tau_{\theta \theta} - \nabla \tau_{z z} - \frac{1}{r} \tau_{rr} = 0 \quad (2),
\end{align}

\begin{align}
\frac{\partial \mathbf{u}}{\partial r} + \frac{\mathbf{u}}{r} + \frac{\partial \mathbf{v}}{\partial z} = 0.
\end{align}
Die in (1) auftretenden Extra-Spannungskomponenten sind durch das konstitutive Gesetz erklärt:

\[
\tau_{rr} = 2\mu(DII) \left(\frac{\partial u}{\partial r} \right), \quad \tau_{zz} = 2\mu(DII) \left(\frac{\partial v}{\partial z} \right), \\
\tau_{\theta z} = 2\mu(DII) \left(\frac{\partial u}{\partial z} + \frac{\partial v}{\partial r} \right).
\]

(3)

Die Viskosität \(\mu(DII)\) ist eine Funktion der zweiten Invarianten des Verzerrungsratentensors

\[
DII = \frac{1}{2} \left[\left(\frac{\partial u}{\partial r} \right)^2 + \left(\frac{\partial v}{\partial r} \right)^2 + \left(\frac{\partial u}{\partial z} + \frac{\partial v}{\partial r} \right)^2 + \left(\frac{\partial w}{\partial r} \right)^2 \right].
\]

(4)

Mit (4) folgt für die Scherrate \(\dot{\gamma}\) einer einfachen Scherströmung \(\dot{\gamma} = 2\sqrt{DII}\).

Für die Bewegung der elastischen Wand gilt unter der Voraussetzung eines dünnwandigen Rohres mit kleiner Deformation und großer Pulswellengeschwindigkeit (in Arterien ca. 10 m/sec)

\[
\varrho \frac{\partial^2 w_z}{\partial t^2} = \frac{E}{1 - \nu^2} \left(\frac{w_z}{r_0} + \frac{r}{r_0} \frac{\partial w_z}{\partial z} \right) + f_z,
\]

\[
\varrho \frac{\partial^2 w_\theta}{\partial t^2} = \frac{E}{1 - \nu^2} \left(\frac{\nu}{r_0} \frac{\partial w_z}{\partial z} + \frac{\partial^2 w_z}{\partial \theta^2} \right) + f_\theta.
\]

(5)

Die Koppelung des Fluids mit der elastischen Wand erfolgt über die Körperkräfte \(f_z\) und \(f_\theta\). Im Übergang vom Fluid zur Wand tritt die Gleichheit der Geschwindigkeiten und der Oberflächenkräfte auf. Mit \(\tau_{rr}\) und \(\tau_{\theta z}\) nach (3) ist

\[
f_z = \frac{1}{h} (p - \tau_{rr}) \quad f_\theta = -\frac{1}{h} \tau_{\theta z}.
\]

(6)

Die durch (5) mit (6) bestimmte Wandbewegung wird durch die Annahme, daß nur Deformation in radiale Richtung auftritt \((w_z = 0)\), stark vereinfacht. Für die Wandbewegung gilt damit

\[
m \frac{\partial^2 w_r}{\partial t^2} = p_\theta - \frac{r - r_0}{r_0}, \quad \alpha = \frac{Eh_0}{r_0}.
\]

(7)

Iteratives Lösungsverfahren

Die Lösung für einen Zeitschritt wird iterativ durch die Folge \((r^0, u_0^0, v_0^0, p_0^0), (r^1, u_1^0, v_1^0, p_1^0), \ldots\) angenähert. Die Werte \(r^0 = r, u_0^0 = u_0, v_0^0 = \dot{u}_0, p_0^0 = \dot{p}_0\) bezeichnen Endwerte für den vorherigen Zeitschritt.

*Abb. 1. Rohrmodell und Geschwindigkeitspuls im Eintritt; Rohrinnendurchmesser \(D_0 = 0,8\ cm,\ Wanddicke \(h_0 = 0,1\ cm;\)
 Gesamtlänge: Modell 1 \(L = 52\ cm,\ Modell 2 \(L = 82\ cm.\ Einströmung:\ Mittlere\ Reynoldszahl \(Re = 600,\ Frequenz\ des Pulses \(f = 1,4\ Hz.)*