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ABSTRACT.In the paper the vortex in cell method for the simulation of the viscous flow in a complex geometry was 
described. Vorticity field is approximated by the collection of the particles that carries the circulation.  The local 
velocity of a particle was obtained by the solution of the Poisson equation for the stream function by the grid method 
and then interpolation of velocity from the grid nodes to the vortex particle position. The Poisson equation for the 
stream function was solved by fast elliptic solvers. To be able to solve the Poisson equation in a region with a 
complex geometry, the capacitance matrix technique was used. The viscosity of the fluid was taken in a stochastic 
manner. A suitable stochastic differential equation was solved by the Huen method. The non-slip condition on the 
wall was realized by the generation of the vorticity. The program was tested by solving several flows in the channels 
with a different geometry and at a different Reynolds number. Here we present the testing results concerning the flow 
in a channel with sudden symmetric expansion, for the flow in channel with backward step, and the flow over building 
systems.  

 
 

 
1. INTRODUCTION 

 
 The vortex method belongs to the particle methods. It means that for the solution of the equation 
of motion we utilized the „particles“ that are called vortex, which serve as a carrier of circulation [5, 6,  
9, 15, 19, 25]. Calculations are carried out in lagrangian coordinates. Generally the vortex methods are 
divided into the direct method in which the velocity of the vortex particle are calculated by the 
summation of the contribution from all particles that exist at the flow by virtue of the Biot-Savart law 
[7] and the method called vortex-in-cell method [9]. Due to the fact that the number of operations in 
direct vortex method are in each time step proportional to the square of the number of particles that are 
in the flow �0(N2), computational time for solutions of the specific problems are very large. On the 
other hand, in the vortex in cell method [9], the velocity is calculated through differentiation of the 
stream function, which is obtained by the solution of the Poisson equation on the numerical grid. The 
number of operations per one time step are proportional to O(N+MlogM), where M being the number of 
points on the mesh, and that results in essentially reducing computational time. Here we described the 
vortex-in-cell method. We wrote the general proposed program on the basis of the vortex in cell method 
and tested it by solution of several problems and compared the results with experimental data or with 
numerical results obtained by a different method. 

 
2. DESCRIPTION OF THE VORTEX IN CELL METHOD 

 
The non-dimensional equations of incompressible fluid motion in two-dimensional space 

transformed to the vorticity transport equations [7] take the form: 
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where � is the non-zero component of the vorticity vector, u = (u,v) is the velocity  divided by the 
uniform inlet velocity U, � is the stream function, t - is the time and Re is the Reynolds number defined 

as Re=Uh/v where v is the coefficient of kinematic viscosity.  
The vortex method is based on the so-called viscous splitting algorithm. First, the Euler equation 

(�=0) is solved; then the diffusion equation is solved. Due to fact that the diffusion is taken into account 
in the stochastic manner, we can interpret the equation of fluid motion in terms of the stochastic 
processes. One can note that due to the incompressibility of the fluid,��u=0, the equation (1) can be 
rewritten as: 

Equation (3) is identical, with respect to form, to the forward Kolmogorow -Fokker-Planck equation 
that describes the probability density called transition density for the stochastic (Marcov) process:[17]: 

where P is probability, G(x,t;�,0) is a solution of equation (3). In the theory of the stochastic differential 
equation, it is shown that the stochastic process that is described by a stochastic differential equation (in 
the Ito sense) [17] 

 has the transition density function that satisfies equation (3), where W means the Wiener process. So 
equation (5) described the convection and diffusion process and can be regarded as the fluid motion 
equation.  
 For the solution (5) we used a viscous splitting algorithm [6, 19]: velocity (drift) is calculated for 
inviscid flow and the last term is added in order to take into account the diffusive property of the 
viscosity of the fluid. In the present work instead of the commonly used Euler scheme that has only 
order of convergence 0.5, for the solution of equation (5) we use the generalized Huen scheme that has 
the order one [17]: 
 

where �Wn is an increment of the Wiener process, and �t is a time step. It is well known that the 
increments of the Wiener process are the independent Gaussian random variables with mean E(�Wn )=0 
and variance E((�Wn)2)=�t; so it is relatively easy to generate it by pseudo-random generator of 
numbers with uniform distribution and  using the Box-Muller transformation [17].  
 Now we describe the VIC algorithm for obtaining the inviscid velocity field u(u,v). 
Vorticity �(x,y) is approximated by the linear combination of the Dirac measures: 
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where p is the number of the vortex particle. Approximation (7) is understood in the sense of measure 
on R2 [25]: 
 

 
 We assumed that we were able to solve the Poisson equation for the stream function (2) by the 
finite difference method. The computation goes as follows: 
1) At first the redistribution of the mass of vortex particles on the grid nodes is done: 
 

 
where  �j(x)=�((x-xj)/h), is a B-spline of order m [26, 18]. For m = 1 the B-spline has the form: 
 
 
and the redistribution process (9) corresponds to a well known area-weighted interpolation scheme [8]. 
In the present work we use the B-spline of the first order in the cells that adjoin the boundary of the 

domain flow and outside these cells we used the B-spline of the 3rd order that takes the form [18, 26]: 
 
 

The B-splines satisfy: �(x)=�(-x) and ��(x)dx=1. To obtain the vorticity in the grid node, we should 
divide the circulation of the node obtained from (9) by the volume of the cell h2. Instead of that, Cottet 
[10] proposed, in order to overcome some difficulties related to the accumulation of the particles, the 
calculation of the volume of the node through position of the particles around the node:  

 
Then the vorticity in j node is calculated as: 
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2) We solved the Poisson equation for the streamfunction with a boundary condition that assured 
cancellation of the normal component of the velocity field on the wall (�=const, e.g �=0 and � =Q, 
where Q is a flow rate ).  

 
The velocity at the grid nodes is calculated by central difference: 

 
3) The value of the velocity from the grid nodes is interpolated to the position of the particles: 

 
where lh is the base function of the lagrangian interpolation. In the present work we took as lh(x) the B-
spline �(x) of order one. This ends the computation process for the VIC algorithm. 
 To satisfy the non-slip condition on the wall (��/�n=0) we utilised the vorticity generation 
process. In numerical practice when fluid equations are formulated in �-� terms, one comes to the 
problem of the determination of the vorticity value on the wall. In literature we can find a whole family 
of different approximate formulas allowing one to make this [13, 23]. One of the oldest and simplest is 
the Thom`s formula [23]: 

Formula (17) may by obtained from equation (14) when one writes it on the wall and takes into account 
that (�i,1-�i,-1)/(2�y2)=0 (index -1 is related to the  “ghost” point outside the computational domain). 
At each time step it is assumed that the formula designates the proper amount of vorticity on the wall. If 
old vortex particles that already exist in the flow give to the boundary point (by redistribution) the 
vorticity �old then to the nodes point on the boundary is added the new portion of vorticity: 

 
The new portion of vorticity �new  is redistributed among the nv vortex particles  giving them the 
circulation �=(� new h2)/nv where nv was chosen in such a way that |�|<0.05, (nv=2-11). 
A similar process generation of vorticity was successfully applied in papers [5, 27] . 
 Instead of formula (17) the Woods formula was also tested: �B  = -3�1/�y2-(1/2)�1 [13, 23]  
where �1,  �1 correspond to the stream function and vorticity values at distance �y from the wall. 
Woods formula has the same order of accuracy and gave results similar to the Thom’s formula (17). 

 The final step obtaining of the solutions is the displacement of the vortex particles in 
accordance with formula (6) and the whole process begin again from step 1). 
 For the solution of the Poisson equation fast elliptic solver was used. To be able to solve the 
Poisson equation in irregular region capacitance matrix technique was used. The capacitance matrix 
technique is well described in many place in literature [3 ,24, 27]. 
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3. EXEMPLARY NUMERICAL RESULTS 
 
3.1 Flow in channel with sudden expansion 
 
 At first we will present the results related to flow over the plane symmetric expansion 

(Fig.1). 
Fig.1 Skech of the gemetry for the flow over a plane symmetric sudden expansion. 

 
The length of computational domain was taken as 32h where h=1 is the height of the step. The 
expansion ratio was W0/W=1/3 or 1/2. 
 
From the literature it is know that as the Reynolds number is increased the flow undergoes several 
changes [4, 12,14]. For a small Reynolds number, (Re�56) the lengths of separation regions behind 
each step are equal and velocity profiles are symmetrical. The growth of the Reynolds number (Re�125)  

causes the loss of symmetry. One of the recalculation zones becomes larger. Further growth of the 
Reynolds number  (Re �252) causes changes in the picture of the flow that are explained in the term  
of a bifurcation theory. [14] (fig. 2). 

Fig.2. Averaged streamlines with velocity profiles at Re=56, Re=125 and Re=252, W=3h, W0=h. 
Dashed lines mean the streamlines have values less the zero and greater than 1. 
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Fig.3. Comparison of the numerical results of velocity distribution across the vertical section with measurements taken 

from [12], Re=56, W0/W=1/3. 
 
 Calculated velocity distributions across a vertical cross section of the channel for different 
values of x for Re=56 were compared with experimental measurements published at paper [12] and it is 
presented in (fig.3). The agreement is good but one may notice that the distribution of the velocity near 
the wall is not as smooth as we had expected it to be. 
 The vortex method provides a natural possibility for visualization of the flow and its analysis in 
terms of vorticity distribution by tracing the position of the vortex particles. Fig. 4 presents the sequence 
of the vortex particle positions at Re=1000, W0/W=1/2. For T=40 we can see very clearly the vortex 
structures that are in good qualitative agreement with the results presented in work [4] (see fig.5 below). 
We used the red color (dark and light) for marking the vortex particles of the negative sign, and the blue 
color (dark and light) for the positive sign of vortex particles. The darker points correspond to the value 
of circulation that is greater than the mean value, calculated separately for positive and negative vortex 
particles. 
  We also carried out the calculation for flow at very a high Reynolds number (Re=105). We must 
say that we are conscious of the objections, which correspond to the problem of numerical diffusion, the 
resolution and so on. The aim of these numerical experiments was just to check the possibility of the 
VIC method for modeling of such a flow. As it was pointed out by Chorin [ 8], one should keep in mind the 
difference between modelling with vortices and numerical approximations of solution of a fluid motion 
equation by the vortex method. It seems that the last experiment belongs to the “modelling”. This means 
we tried with the help of a moderate number of vortices to get qualitative understanding of the vorticity 
field dynamic at a very high Reynolds number. The sequence of the vortex particles for the flow at 
Re=105 is presented in Fig.6. It is easy to notice presence of vorticity filaments -- thread-like structures 
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that are regarded as typical structures of two-dimensional turbulence [2, 16, 20, 22 ,21]. One can 
observe that filaments are accompanied by a large coherent vortex structure that stabilise them , [16, 20, 
22]. These large vortex structures are build with the both sings of vortex particles. Vortices of the same 
sign may undergo merging and vortices of opposite sign may form dipoles [20, 22]. 

 
 

Fig. 4 Evolution of the vorticity in channel with sudden symmetric expansion, Re=1000, W0/W=1/2. N means the 
number of particles. 

 

 
Fig.5 Scanned picture of the experimental visualization from the Cherdron, Drust, Withelow paper [4](figure.9d). 

 
 

All these mentioned phenomena we may find in the description of two-dimensional turbulence in 
literature [2, 16, 20, 22]. Fig.6 it was presents the sequence of the vortex particle positions at Re=105 for 
the flow over the backward step. The height of the step was h=0.5, the length of the channel was 24h, 
�x=�y=0.05,�t=0.01. In inlet the velocity was U=1,(Re=Uh/�). At the first frame for T=5 we can see 
the separation of the vortex sheet from the sharp corner and its roll-up. At the same time on the opposite 
wall, one can notice the concentration of the vorticity, which grows with time, and on the next frame we 
see that it is the place from where the process of vortex shedding goes on. One notices that the vorticity 
has a tendency to create filaments. The filaments of the vorticity are regarded as the fundamental 
structure of two-dimensional turbulence [2, 16, 20, 22]. We see that filaments are accompanied by large 
coherent vortex structures that stabilize them [16]. These large vortex structures  
 



TASK Quarterly 3 No 3 (1999), 343-360 
 

 
8 

 
 

Fig.6 The sequence of the vortex particle position at Re=100000, W0/W=0.5 
 

are built with the both sings, positive and negative, of vortex particles. In computer animation film one 
may notice that vortices of the same sign undergo merging, and vortices of the opposite sign form a 
dipole structure [16, 20]. All these phenomena one can find in the description of two-dimensional 
turbulence [2, 20, 22].  

 
 
 

3.2 Flow over the backward-facing step 
 
 For the flow over the backward-facing step there are well-documented experimental [1, 11] and 
numerical data [15, 21] available from literature. So this flow  is a good example for testing the 
program. At first we checked the lengths of the recirculation zone behind the step at different Reynolds 
number. It is known that the reattachment length xr = xl/Hs (see fig.7) increases approximatly linearly as 
the Reynolds number increases.  
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Figure 7. Sketch of the geometry for the flow over backward-facing step 
 
 At Fig.8 we showed the averaged streamlines for different Reynolds numbers 
(Re=100,200,300,400,500,600). For calculation purposes we took �t=0.01, �x=�y=0.05, L=12H, 
H=1,U=1. To reduce the statistical perturbations due to stochastic manner of solution of the diffusion 
equation we carried out an averaging process. The averaging was done for 200 time steps form T=38-
40. The linear growth of the recirculation zone It is visible. For Reynolds number Re <300 the 
agreement with the experiments are very good [1,11] but for Re>300 the length of the recirculation zone 
is underestimated.  
 

 
 

 
Fig. 8 Averaged streamlines at Re=100,200,300,400,500,600, t�[38,40], �t=0.01. 
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It is difficult to indicate one special reason for that. It is known that for Reynolds number Re�229 [11] 
the velocity near the re-attachment point starts to oscillate. Due to vorticity generation on the wall and 
the stochastic manner of simulation of viscosity of the fluid, the flow is permanently perturbed and it is 
difficult precisely determine the position of the re-attachment point. The same effect was observed, in 
the direct vortex method used for the simulation of this flow [18]. 
 In order to see the qualitative changes that the vorticity field undergoes when the Reynolds 
number increased we present in fig, 9 the vorticity field created by the vortex particle position at 
different Reynolds numbers in the same time T=40. In the first frame (Re=100), the vortex particles are 
uniformly spread throughout the channel. When the Reynolds number increases, we see that a potential 
core (the space without any vortex particles) appears. This potential core grows when the Reynolds 
number is increased. It is easy to notice the filaments of vorticity and the large vortex structure at high 
Reynolds numbers. 
 

 
Fig. 9 The vorticity field created by vortex particle positions at different Reynolds number and in the same 

dimensionless time T=40. 
 

 In Fig.10 the sequence of the instantaneous vortex particle position was shown at Reynolds 
number Re=105. It is interesting to notice the vorticity shedding phenomena from the point on the upper 
wall (opposite to the corner of the step). The remarks that I made at the end of section 3.1 about the 
behaviuor of the vorticity at large Reynolds numbers is also true in this case. The vorticity has a 
tendency to create filaments. We see that filaments are accompanied by large coherent vortex structures 
that stabilize them, and vortices of the opposite sign form a dipole structure [20,22, 16]. These large 
vortex structures are built with both  positive and negative signs of vortex particles.  
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Fig.10 The sequence of the vortex particle positions in channel over backward-facing step, Re=105. 
 
 
3.2 Flow over a system of buildings  
 
 In paper [29] interesting pictures of the flow over the system of buildings were published. The 
flow was visualized using smoke (see fig.11 for scanned pictures from that paper). The pictures 
illustrate how minor design modifications can make a large difference in wind velocity at the pedestrian 
level (between the building). In the paper [ ] was notices that “the high buildings causes  the high 
velocities by deflecting the upper and faster atmospheric layers down to the ground; where they impinge 
on the ground, the velocities may be double the value they would be in the absence of the building”.  
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 Fig.12 shows the scheme of the configuration of the buildings that was taken to the calculation. 
As a unit length the height h of the smaller building was taken, h=1. The height of the higher building 
was 3h. On the inlet it was taken the velocity U=1, Re=Uh/�. The dimension of the computational 
domain was taken 15h x 6h.On the upper boundary it was taken that the normal velocity is zero. So the 
generation of the vorticity took place only at the rigid boundary in the bottom and on the serface of the 
building. Gird steps was taken as �x=�y=0.1, �t=0.01. 
 

 
Fig.11. Scanned pictures of the flow visualization around two models of a tall buildings taken from the paper by 

H.Thomann [29]. 
 
 

  
Fig12. The scheme of the computational domain for the flow over the system of buildings a) the plain system of 

buildings b) modified system of buildings. 
 

 Fig. 13 it shows the streamlines that were obtained by vortex method. The shapes of the 
streamlines and generated structures are in good qualitative agreement with the experimental pictures 
presented in Fig.11. For numerical calculation we choose Re=2000, Re=Uh/�.  
 The vortex method has the natural possibility of analyzing the flow features in term of vorticity 
through vortex particle positions. In fig.14 and 15 the sequence of the vortex particle positions for the 
plain (unmodified) and modified system of building was presented. We started the calculation from the  

X

Y

0 5 10 15
0

1

2

3

4

5

6

U

a)

X

Y

0 5 10 15
0

1

2

3

4

5

6

U
b)



TASK Quarterly 3 No 3 (1999), 343-360 
 

 
13 

 
 

Fig.13. Streamlines of the flow over the buildings obtained from the calculation. To better visualize the structures of 
streamlines the zebra technique of drawing was used. 

 
 
potential flow. For t>0 the viscosity of the fluid started to play a role. One can see the development of 
the Kelvin-Helmholtz type vortex structure. This vortex structure induced an air velocity greater than 
the velocity of the air coming toward the fronts of the buildings. This is clearly visible in Fig.16 where 
the close-up of the frame for T=20, together with the velocity field, was presented.  
 
 
A small element in front of the tall building was added to lower the velocity on the pedestrian level 
between the buildings. That velocity was reduced several times. It is interesting to notice the influence 
of that small construction on the vorticity distribution behind the tall building (compare the relevent 
frames in fig.14 and 15). We notice that the added construction destabilized the vortex Kelvin-
Helmholtz structure, and the distribution of the vorticity behind the tall building is more chaotic.  
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Fig. 14 The sequence of the instantaneous position of the vortex particles.), Re=10000. 
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Fig. 15 The sequence of the instantaneous position of the vortex particles for modified structure of buildings, 
Re=10000. 

 
 
 

 
Fig.16 Instantaneous vorticity field that was created by the vortex particle positions and related to its the velocity field. 
 

 
4. CONCLUDING REMARKS 

 
 

It seems that now it is not far from the creation of a general flow simulation package based on the vortex 

method into which the user need only enter minimal data concerning boundaries in order to be able to perform the 

numerical investigations. The present paper is a move in that direction. Vortex methods provide natural, useful 

tools for analysing flow in term of vorticity dynamics, and the visualisation of the flow by vortex particles. The 

study of the evolution of the vorticity field helps one to understand the features of flow in a complicated geometry. 

It is one of the few methods which give reasonable results at large interval of Reynolds numbers trying to solve the 

Navier-Stokes directly. Further study on the VIC method should clarify the problem of numerical diffusion that 
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may be introduced by a numerical grid. It is believed that introduction of the deterministic method of the diffusion 

simulation instead of stochastic one should improve the numerical results.  
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