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Abstract: The vortex particle rnethod is an easy and attractive tool to analyze flow phenomena by
invcstigatiug volticity ficlcls and the generation of vorticity at solid walls, The vorticity generation
at the rr,alls and its introduction to the flow is of fundamental significance for understanding such
pheuotrrerra as transition to turbuience, boundary layer separation in an eruptive way, and vortex
stmctnles regeneration. In the present study the vortex-in-cell usefulness of the method has been

testcrl using a variety of simple test problems: the Poiseuille flow, the second Stokes problem, the
ca.vit\', the bacl<u'ard step flow, the vortex dipole interaction with the wall, and the flow past a square
c),lirrclcr in the vicirrity of a wail in order to illustrate the correctness and usefulness of the vortex
particlc method.
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1. Introduction
Vorticit;' is fundamental for fluid mechanics. All real flows are characterized

b), vorticity different from zero. A great number of phenomena in hydrodynamics is

analyzed from the point of view of vorticity dynamics. The great significance and
importance of the discrete vortex methods for the study of hydrodynamic phenomena
stems that. Vortex methods have been used to model hydrodynamic phenomena
for a long time. Rosenhead (1933, [1]) has been acknowledged as one of the first
users. He approximated the surface of discontinuity with point vortices between

two incompressible fluids witli different tangent velocities and studied its evolutions,
Such a surface can be considered as a vortex sheet iayer and it is known that it
is unstable (Kelvin-Helmholtz instability). Other scientists that followed him tried
to use vortex methods to model some different hydrodynamic phenomena [2., 3].

However, it was Chorin's [4] works that finally propelled the studies of vortex methods
application to an unbelievable degree. In his work [4] Chorin proposed a discrete
vortcx method, called the vortex bubble method. The point vortex was replaced by
a vortex rvith a finite support, He designed the method in such a way that viscous flows



16 H. I(udela and Z. M. Malecha

could be modeled without a numerical mesh application. He used a viscous-splitting
algorithm, whose solution was obtained in two steps: first, the inviscid fluid equation
rvas solved, then the Stokes ploblern (diffusion equation) was solved by taking into
account the fluid viscosity. Calculations were carried out in Lagrange variables. The
boundary non-slip condition on rigid walls was found by generating new vortices on
the wall. Although Chorin demonstrated the method's efficiency for a model flow
past a cylinder, the method required some more arbitrary procedures - for example,
it should be controlled, if the circulation value of new vortices generated on the
cylinder boundary is not too large by selecting the cut-off radius of a vortex bubble.
The method proposed by Chorin belongs to direct methods. The velocities of vortex
particles are calculated on the basis of the Biot-Savart law [5, 6] by summarizing
velocities induced by all particles in the flow. The number of operations in each
discrete time step is proportional to O(,n/2) where l[ denotes the number of particles
in the flow.

A special, fast method of summation for calculating the interaction of particles
that are presented in the computational domain [7, 8] should be used to reduce the
time calculation. A different approach, which allows the time of calculations to be
reduced by hundreds of times, is the Euler-Lagrange approach called vortex in cell
(VtC) [9]. The approach retains the key feature of particle methods. Advection is
dealt with using Lagrangian variables but the velocity is determined by solving the
Poisson equation for the stream function by using a numerical grid. In this way,
explicit discretization of the advective term in the Navier-Stokes equation and related
stability constraints are avoided. The values from the grid nodes are interpolated onto
the positions of particles. The grid may be used also for the fluid viscosity simulation.

The question arises: Is it possible for a discrete vortex method to be a certain,
fully reliable numerical method to model viscous flows? The terms ,,fully reliable
method" means a method that is simple to use, with a number of rninimum parameters
which influence the computational accuracy without referring to any additional
arbitrary means and whose numerical solution converges to the exact solution when
the numerical grid is refined. In [4' 10], the VIC method accur-acy wźłs compared
with the finite difference and spectral method. In the present work, using many
different, relatively simple examples, we have tired to demonstrate that the vortex
particle method is accurate and that it is possible to determine its order. It is r,vorth

underlining that the method is especially attractive when it comes to analyzing tlie
evolution of vorticitv.

2. Equations of fluid motion
Equations of the incompressibie and viscous fluid motion have the following

form:
0u 1-
At + (z.V)LL:- pVp+uL,u, (1)

**|:0. (2)dr dy
rvhere u : (u,u) is the velocity vector, p is the fluid density, u is the kineniatic
viscosity, p is the pressure and A : 02 lAr2 + A2 lAa2 is the Laplace operator. Further,
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\^Ic uill żlssllll}c tlrat p: Col}St. Eqtrations (1) and (2) shoulci be conrpletecl rr'itlr
bounclar'\' ancl initial conditions u'hich iu this case have the following forn:

It :'LLu, for (z:. y) ę a{Ż,

u(l:,'y' ć:0) : uĄ(I,u),

wltcre Dś) derrotes tlre rigid wall nrovenent rł'ith velocity u.u ancl ?rg@,a) is arr

initial velocit)- clistribution. Equation (2) which expresses fluid incompressibilitl',
gutrranteos the existence of strearu function { and is related to the vclocitl. field
irr tlrc fbllolving \Ą'ź)y: 'u : fl(, f 0g, u : -D,"i': l0:r.In tlre two dimerrsionai space, vorticity
vectot' rot(u) : ku : )tt f 0r - 0n l0y has o'ly one nonzero component perpendicular
to the plerne of nrotion (k is a unit vector pelpendicular to the plane of motion). Acting
witir the rotation operator rot(') on both sides of Equation (f ), it can be transforured
into n Hehnholtz equation describing the vorticity field evolution in time:

0o 0a 0,:-- +zl: + ul* : uL'w. (5)dt dr dy

A.ł/l - -rr. ,:!, 1): -?! (6)dy 0r'
Vectorial Equation (1) has been replaced by a scalar Equation (5) for u(r,y.t).

It is worth noticing that there is no pressure term in Equatio" (5). A viscous splitting
algolithm is comrnonly used in the vortex methods [5]. This means that Equation (5)

is solved in two steps. First, the inviscid equation is solved:

0a 0a 0u
a +'tt *łz,ą:0.

and tlren the viscous equatiorr (Stokes problem) follołvs:

0a

-:ULA,at

rł'ir(lt'r' o: (rr1,cr2) rlerrcltcs t}rc L:rgr'atrge coordinatos of the fluid particles arrcl

a: lt,.y). The velocitv u(r,t) is rlctermirred b.v the vorticitl; 1lic1.'5utiott (see

Eqnrrtion (6)). Velocitr-in glid uo<les can be obtairrecl b). solvirrg thc Poisson equzrtiott

fclt'1'irtl str'ezlnr frtnctiorl (6) ou a ttltlticlLiCa] lncs}r il1' 1L. firritei diił'orelrcc rrrethod.

\rcloc'jt_r. fr'orlr tho ntls]t uorlcs is irrtcr']lcllatelci ollto tlrr: rl(;r'tr:x ptir'ticlr:s loczrŁiorr. Srrt:il

I7

(3)

(4)

(/,)

(B)

In the present work, Equation (7) has been solved by the vortex parti-
cles method. The diffusion Equation (8) has been solved by the Particle-Str-ength-
Exchange method.

3. Vortex particles method description
This method stems fiom Equation (Z), with the vorticity constant on the

trajectory a(r(ź,CI)'ź) : c','(a,0), rvhere r(t,a) means the flrrid particle position

'n'hiclr was at a in the initia] tirrre ź : 0. It is known fron the third Helmholtz
theolern [6] that vorticitf is carrieil b-y the fluid. The motion of vortex particles can
'be dcscribed b5, the following set of diff'erential equations:

(e)
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an approach speeds up calculations significantly and it has been applied in the present
work [11].

For calculation purposes it is necessary to replace the infinite set of ordinary
differential Equations (9) with a finite one. In order to do this, the space of Lagrange
variables o is covered with a regular mesh (j1L^r,j2L^a) (jt, jz:1,...1/), A: LA:h.
Such a mesh is also used to solve the Poisson equation for the stream function. The
initial vorticity field is replaced by a discrete distribution of the vortex particles. The
adequate circulation is assigned to each particle:

,, : I o,u 
(r,, y)d,A = łł a,

L,u(ł) = j I (,@) -,(r))rl,(a - t)da.

(10)

where Ap : h2 denotes the mesh cell area with index p, whereas Ó is the vorticity
mean value for cell Ao. Vorticity is approximated by the total of the Dirac measures:

iV

a(r,)=froalr -%), (1 1)
p:L

where l/ is the number of vortex particles and ó denotes the Dirac function. The
circulation of particles changes in time due to diffusion. Equation (7) in the time
interval (tn,tn+t) is obtained by solving the set of differential equations:

dą(t)
dt

:u(ti(t),,t), ą(t"):rł, tnśtśtn+t, P:1'...N, (\2)

and new positions rf,+1 of the vortex particles give an approximate solution of
Bquation (7) for time ź:t'łI:

N
,nłI @) : ! roa1' - *ł*'), *;*' -- łp(t,+)'

p:L

The particle strength exchange (eSn) method has been used to solve the diffusion
Equation (8).

3.1. Partźcle strength erchange (rsn) rnethod
The main idea of the particle strength exchange (PSE) method is to approximate

the differential Laplace operator with an integral operator which has the following
form for two dimensions [S, tZ]:

(13)

(14)

Function n, : e_2?](ł l e), (' > 0) is an order r Symmetric cut-off of the function which
satisfies the following moments conditions:

f

.f 
r&1n@)dł :26ii for i, j -- I,2,3,

[ł2

f "r'r|'n@)d,ł:0 for ktłkz:1 or 3 ( kr łkz<r1_I,
[12

f @r*'vt@)ld'r < m,

lt2

(15)
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where ó;7 - the Dirac Symbol (5ro-- 1). Parameter g should be chosen to satisfy the
relation €lh> 1; that is, the supports of the neighboring particles should overlap
each other (h - mesh cell size). This overlapping means that each particle should
be able to communicate with a specified number of the neighboring particles. Using
expression (14), Equation (8) can be replaced by:

19

T:,,_'Ę(fn- r;r(,=)
q

(16)

(17)

(18)

(1e )

The following function with compact support 4(z) has been chosen in this work:

( C f.or |zlŚz ,
n@) : 

t ó*'''' for Ir |> 2 ,

where C:0.835 has been calculated to satisfy the first condition from Equation (15):

Ilrl'rt@)dr:2ll2l. Function r7(r) can have infinite support. In such a case, the
interaction of each vortex particle with all other particles in the flow domain must
be calculated. It means that the time caiculation is proportional to O(.n/2), where
I/ denotes the number of vortex particles in the flow - which significantly slows the
calculation process.

In the case of a function with finite support, computer time calculation is
proportional to O(ml[), where m means the number of particles encompassed by the
cut-off function. Since rn ś N and m is constant, the time calculation is proportional
to O(,nf). The kernel of function (17) encompasses exactly nine neighboring vortex
particles (m:9) in the algorithm developed for this work.

3.2. Rerneshing

The vortex particle method is a self-adaptive method. Vortex particles tend to
gather in flow regions where high velocity gradients occur. On the one hand, it is an
advantage. On the other hand, it can cause inaccuracies. Particles can create phantom
vortex structures which could significantly alternate the velocity field. It aiso affects

fluid viscosity modeling. To keep calculations precise, vortex particles are ordered

by distributing them into a regular mesh (remeshing). Vorticity field information
transfer from vortex particies into mesh nodes (redistribution) as well as ordering
vortex particles distribution in the flow (remeshing) (6) have been performed using
interpoiation [5]:

,,:i \r(e=)n-,,
ń\l

where rr,i denotes vorticity in the mesh nodes with j index and p index numbers vortex
particles. The following interpolation kernel has been chosen in this lvork [S, tS]:

( 1-12.

t ll 
- r)(2 - ') t2'

0 ( r <712,
t12<r<3f2,
r > 312.

p(r):
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The interpolation kernel (19) can be used only in an unbounded domain. To
avoid problems with vorticity ,,running out" beyond the calculation domain, it is
necessary to use one-sided interpolation kernels as follows (see Figure 1):

(20)

0.5ił

Figure 1. Remeshing for vortex particles close to the wall

Interpolation kernels (19) and (20) maintain a conservation of zero, first and
second order moment of the vorticitv fieid:

(2r)

Both kernels (19) and (20) encompass the nine closest mesh nodes [13].
We decided to do the remeshing for every time step. Therefore, an individual

procedure for redistribution of circulation of particles onto mesh nodes was unneces-
sary. It made the calculations easier and faster. The differential Equations (12) were
solved by the second order Euler-improved method. The velocity of the particles be-
tween the grid nodes that was needed in the solution of Equation (12) was calculated
using the interpolation formula:

u(rp):t uiln(rp-*),
3

(t22)

where 17, is a basic biiinear Lagrange's function.

3.3. Irnplernentation of a no-slip conditźoTl orl a solid uall
The way in which vorticity is generated on the u'all has been a scientific problcrl

for a ver-v* long time. It is a fact that the wall is the only place in incornpressible
flows where new vorticity appcars [6, 14]. However, a rnore detailed picture of t]re
process is still not clear. In the practice of vortex methods. ',vc ref'er to sorne physical

rMo: I u(r)r"dz: conSt, for a: 0,I,2.
.t
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models or calculation tricks that enable us to determine the vorticity value or vorticity
flux on a wall. The first method, the oldest one in historical terms (1933, Thom),
which cletermines the vorticity value on a wall (Dirichlet condition) is often used in
calculation methods based on formulating the fluid motion in terms of vorticity and
stream function (r-rlr) [15].It can be called a calculation method. The other method
is based on the dynamic model of vorticity flux generation on the rvall (Neumann
condition) provided by Liglrthill [16]. Both methods have been tested in our łvork and
are presented below.

3.3. 1. Dirich,let boundary conditi,on

Condition (3) for a viscous flow equation presents the lack of a fluid slip on
the wall. Both the normal component to the wall and the tangent component of the
velocity field should equal zero. The description of fluid motion in terms of vorticity
and velocity definitely simplified the motion equations, but at the same time it caused
problems related to satisfying the no slip condition (3).

For the viscous fluid we found it necessary for the tangent velocity component
on the wall to equal the velocity of the wall:

21

aIb
u":0n, Us:Uwt (23)

where u, denotes the tangent fluid velocity on the wall, u- denotes the velocity of
the wall, and n denotes the direction perpendicular to the wall. The condition of
no penetration of the fluid through the wall (normal speed to the wall equals zero)
satisfies the boundary condition for the stream function: ry': const.

Further, if we apply the five-point differential scheme to the Poisson equation
for the stream function (6) it will result in the following equation for points located
on the wall:

where s denotes the direction tangent to the wall. If Equation (23) is replaced with
some finite difference formula for the first derivative and introduced to Equation (24),
the value of the vorticity needed to satisfy the non-slip conditions for the fluid on the
wall can be obtained. In the present work, we use the most popular - and simplest
Thom formula [15, 17]:

ą!t,t - ,bl, -, - lrur + ,!.i, -t : tht, t - ZL,n ' u-. (25)
2A,n

And since the stream furrction is constant on the wal)'lfli-1,o:ł;,o:1hł+L,o the final
equation will be:

Z(rht,t - ąbl.,o - L,n. u-)
-al,o: -0wall :

A,n,2
Formula (26) is first order-accurate for vorticity [17]. A table of different higher order
formulas can be found in the work [15]. However) as stated in [15] it is hard to
point otrt a formula with the best qualities, nevertheless, we are convinced - and we
have already checked it [18] that a higher order formula should be used for a large
Reynolds number value and a more complicated geometry (see also [19]).

In these calculations, raising the order of formula (26) has a very small effect
on thc rnrnerical results. This is the reason rvhy we have used the Thorn formula (26)

(24)

(26)
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to determine the vorticity value on the wall to satisfy the no slip condition (3). If the
vorticity is different from that described in Equation (26) - as a result of redistribution
of the vortex particles circulation that is present in the flow at the boundary points

- then in this node, vorticity is added to preserve Equation (26):

OwaII : LrJold *&iadd, (27)

where oo16 denotes the vorticity present in the flow, and u.'.64 the vorticity that needs
to be added.

Additional vorticity value c./164 was determined in the nodes on the walls. This
additional vorticity was changed into circulation ladd : h2a^aa and added to the
particles which lay on the wall lwalr : fora *fadd. The number of particles that take
part in computations is constant.

3.3.2. Neumann boundary conditi,on

In the other method used in this work the appropriate vorticity flux is
determined from the wall into the flow. It corresponds to the boundary condition
of the Neumann type and is based on the dynamic description of vorticity provided
by Lighthill [16]. The vorticity flux on the wall can be expressed as [20]:

,ro' :-'Y(s)
' ar: - N' (28)

where 'y :'tL" is the intensity of the vortex layer along the rigid wall, z" is the spurious
tangential velocity on the wall.

In order to introduce the vorticity caused by an additional vorticity flux into
a flow domain, the following initial boundary value problem for a diffusion equation
in each time step is solved:

Uwall
-d, -uL,u*^11:0,

a*u1I(x, g,0) :0,
Óc''l*au

0n

(2s)

Lt-u
Let us notice that the initial vorticity value equals zero. The vorticity obtained in
the mesh nodes by solving problem (29) is changed into circulation and added to the
circulation of particles already present in the flow.

In order to get some idea of how a vorticity flux can compensate the spurious
tangent component of the veiocity field, let us write the viscous flow Equation (1) on
the wall:

du 0p 0u
dt 

: - a' 
_'ń (30)

where variable s denotes a derivative in the direction tangential to the wall and rz in
the normal direction. It can be seen that the acceleration is related to the pressure
gradient. as rvell as to the vorticity flux. Generally the pressure gradient is not known.
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If a tangent component of the velocity field different from zero appears on the wall,
it can be said that the wall has accelerated in a short time interval Aź:

du ^. u"(t+ At) - u"(t) r(s)s.i=-ff:ar. (311

We assume that the additional acceleration will be compensated by the additional
vorticity fll:x u)u f ón. Hence, it can be assumed that the tangent velocity component
in the time interva] Aź is balanced as follows:

u'(t + At) : u Lt(Aa I An), (u" (t) : 0). (32)

In such a way the vorticity flux can be expressed by formula (28).

3.3.3. Summarizing the computati,onal algori.thrn of the VIC method
One time step from tn to tn+ Lt proceeds as follows:

o redistribute the particles circulation onto mesh nodes (19), (20);
o solve the Poisson equation for stream function (6);
o calculate the velocity on the numerical mesh;
o fulfill the no-slip condition on solid walls;
o displace the vortex particles according to (12);
o remesh the vortex particles onto a regular grid (formula (19), (ZO));
o change the circulation of the particles as a result of the diffusion using the PSE

method (16).

A fast elliptic solver was used to solve the Poisson equation. The capacitance
matrix technique was used to solve the Poisson equation in an irregular region
(different from rectangular) 121,, 22).

4. Numerical results
41.1. Poiseuille flou

The first test checking if the vortex particle method was correct was the
Poiseuille flow in a rectanguiar duct, for which the velocity distribution is given as
foliows: u _na (., s\ (33)

where rl denotes the height 
", 

Til."i"., TJ' ,!^-' ,othe maximum velocity (in the
center line of the duct). The length of the channel is tr:40, and the height,, H:L

Figure 2 presents an exemplary solution for Re:100 (Re:UHlu).In the
figure, the vorticity and velocity fields are presented. It can be clearly seen how
the initially rectangular velocity profile is changing into a parabolic one due to the
presence of the wall as well as to the production and diffusion of vorticity from the
wall.

1 1.5 2 2.5 3 9.5 10 10.5 11 1

Figure 2. Poiseuille flow - velocity field and vorticity field for Re: 100

23
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It is clear from Equation (33) that the solution does not depend on viscosity.
The distance on which the velocity profile is formed has been studied in order to
investigate the influence of viscosity on the flow entrance effect. It is known from
experiments that the length increases with an increase in the Reynolds number [23].
This relationship is approximately linear for the laminar' florv: try : C.Re.FI, where
,Ly denotes the velocity plofile forming length, and C is a constant. Figure 3 presents
the results obtained by the authors of this work. In the picture it is seen that the
velocity profile formation length depending on the Reynolds number is approximately
linear and the constant is C:0.075.

50

40

30

{

0

Figure 3.

100 200 300 400 500 600
Re

The length of velocity profile formation as dependant on the Reynolds number

N4oreover, the order of convergence for the calculation algorithrn has been
estimated on the basis of the results obtained. To examine the order of convergence
the maximum norm has been used for the channel end:

llp (","n) 
I 1." 

: 
T:," l"(y, t) - un (a, t)l < C h,',

where o, denotes the method order, and h is the numerical mesh size. The calculations
have been performed on numerical meshes with a different mesh size A,r: LU : lr
and time step Aź:0.5h in order to obtain the order of convergence. Irr Figure 4 tlre
convergence of the method is presented graphically. In Figure 4 the dependence on the
mesh size on the logarithmic scale is presented. The siope (direction coefficient) of the
line reflects the convergence rnethod order. The order of convergence for gencration
of vorticity is approximately a ź 2.0, atrd a ./ 1.5 rvlren obtained bJ, the rrrethod
witłr the Diriclrlet boundar'5,, conditiorr (Nzletlrod I) and with the Neunrarrrr corrditiorr
(Nlethod II), respectively.

łt.2. Second Stokes problern
A more demanding problern for which an analvtical solution is also knou,n is

tlre secorrd Stokes problerrr [23]. Thc basic difficrrlt1' is a nrovitrg rvzrli rł'lriclr oscillates

(34)
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-<> - Method I -* - N'Iethod II

A:I.5472r-0.2097

A:\.9299r-0.7596

Iog(h)

Figure 4. Convergence of the presented method

with a given frequency. The velocity on the wall (boundary condition) is given by the
formula: u(a:0,ć):t/6cos(cuź), where [/6 is the velocity of the wall (amplitude) and
i.,,' in this case denotes the frequency (it has been assumed that r,,': 1). The analytical
solution to the second Stokes problem is given by the following equation:

u(a,t): cos(ź -a\flJz")exp(yf !2u). (35)

Figure 5 presents an example of a solution to the problem discussed for Re: 400, u : I
and [/6: 1. The computational domain has been taken as: Iength, L:4, and height
H :5. The grid parameter and time step has been used as in the Poiseuille problem.
Velocity and vorticity fields can be seen in Figure 5a, whereas frame 5b presents
a comparison of the velocity profile obtained by means of the present calculations
with the particular solution for time ź: 13.

analytic solution
-. - numericalresults

7.4 1.6 1.8 2.0 2.2 2.4 -0.2 0.2

Figure 5. Second Stokes problem: (a) vorticity field and velocity vectorsl (b) comparing the
horizontal velocity component of the present results with an analytic solution

The order of convergence has been estimated by means of the rnaximum
norm (3a) for the middle of the computational domain, r:2. For the generation of
vorticity the results are as follows: aryI.4 for the boundary condition of the Dirichlet
type, and rł '/ 1'3 for the Neumann condition.

Ę
oO
o

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

a
0.4-2.0 -1.1-{.1 0.01 0.1
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4|.3. Caużty flo-
The cavity flow has been chosen as the next test problem. The florv in a square

cavity with a side length L :1 is caused by the upper u,all motion with velocity
Lto:I, while other walls are still. A series of characteristic vortex structures appear
in the cavity depending on the Reynolds number Ple:uoLlu.

Although there is no analytic solution to this probletn' it łras becn widely used
by others to study very different numerical methods[24,25]. N{ost often, the position
of the primary vortex centre as well as the position of secondary vortex structures
are compared in relation to the Reynolds number. We have made a comparison for
a wide range of Reynolds numbers and for different sizes of the numerical mesh and
with different time step values" The numericai results presented in this work refer to
the flow with Re: 100, 400, 1000, 3200, 5000, 7500, 10000. The major comparative
parameter for the cavity flow is the centre position of the primary vortex (Table 1),

and the appearance of secondary vortices. All these phenomena are closely related
to the Re number vaiue. Figure 6 shows the flow with the Neumann type boundary
condition for vorticity; for the Dirichlet type condition the images are very similar.

The distribution of the obtained streamlines, and the appearance of the
characteristic secondary vortex structures as dependent on the Re number are very
close to those that can be found in scientific literature.

Table 1. Comparison of the center location in the primary vortex

Re
Present method I

@,a)
Present method II

@,a)
Ghia eć al. |2a)

@,a)
100 (0.6163,0.7360) (0.6164,0.7336) (0.6172,0.7344)

1000 (0.5310,0.5650) (0.5310,0.5638) (0.5313,0.5625)

3200 (0.5185,0.5386) (0.5185,0.5386) (0.5165,0.5469)

5000 (0.5178,0.5340) (0.5165,0.5337) (0.5117,0.5352)

r0000 (0.5160,0.5298) (0.5159,0.5273) (0.5117,0.5333)

/r./ł. Flous oaeT backuard-facing step
The flow over backward-facing step has been carefully examined both numer-

ically [8,26-28] and experimentally [29], and owing to that it can serve as a good
comparative test. The results obtained in the present research have been compared
u'ith the results of the experiments presented by Armely et al. [29), as well as with
other numerical results obtained by other calculation methods.

A characteristic feature of the over backward-facing step flow is the recirculation
zone generated behind the step, which increases with the increasing Reynolds number.
The normalized length of this recirculation zone L : r I H 

" as dependent on the Re
number Serves aS a comparative parameter (Ę - height of the step). Figure 7 presents
the results obtained. An example of the flow field is visible in the image on the left
(streamlines and velocity vectors with the vorticity field as a background). A chart
from image 7b shows a change of length of the recirculation zone behind the step
as dependent on the Reynolds nurnber and a comparison of the present results with
experimental and numerical results.
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Figure 6. Streamlines for the cavity
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A significant concordance for Re { 600 of the results obtained in the present

work with the experiment can be seen irr Chart 7b. For Re ) 600 it has been

noticed in [29] that the flow loses its two-dimensionality and it is the reason for

Re : 600
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the discrepancy between the numerical results and the experiment measurernents.
For a higher Reynolds number, the recirculation zone begins to tear off and a vortex
structure similar to the vortex Kńrrniln street (Figure 8) appears in the channel [27].

Figure 8. Flow over backward-facing step, Re: 3000, f : 10: (a) vorticity,
(b) isolines of the stream function

4L.5. Vorter di'pole źnteraction uźth a uall
The vortex particle method provides a possibility of examining the motions and

interactions of any vortex structures with one another and also with the walls [1g, 30].
A vortex dipole interaction with the wall is presented as an example. A vortex dipole
is a set of two vortex patches with the same circulation values but with opposite signs
which are separated by a small distance from each other.

Figure 9 shows the scheme of a calculation domain with a vortex dipole. At the
beginning of the calculations, the fluid was at rest. The calculation area was L:5
long and H :5 high. The boundary conditions for solving the Poisson equation for
the stream function were as follows: it was assumed that the velocity and vorticity
fields were periodical in direction e whereas for the lower (y: O) and upper (y: b)
boundary it was assumed that tl.t:0. The no slip condition between the fluid and the
wall was determined using the Dirichlet condition for vorticity.

The initial dipole location was defined by two parameters: a - the distance
between the centers of patches forming the dipole, ó - the distance of the dipole from
the wall. The initial radius of the vortex patches was r : 0.15, and their initial vorticity
values were equal but had opposite signs; the left patch vorticity cd; w&s negative
(counterclockwise), and the right patch vorticity crrp was positive (clockwise). Thanks
to that, the mutual interaction of dipole patches caused the movement towards the

-10 -7.6 -5.2 2.7 -{.3 2.r 4.5 7.0 9.5
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Figure 9. Calculation area of the presented problem

2 2.5 3 3.5 1.5 2 2.5

Figure 10. Visualization of a dipole collision with the wall
comparison with numericai results, ru:0.0001
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Figure 11. Interaction of the vortex dipole with the wall z:0.00002, o:0.5

wall (downwards). The numerical mesh size and the time step were Lr:Ay:0.01
and Aź : 0.01, respectively.

The numerical results obtained indicate high agreement with the experiment
(Figure 10). Both sizes and locations of the primary and secondary vortex structures
are very much alike. Primary structures mean vortex dipole patches, whereas sec-

ondary structures are vortices separated from the wall, generated by the interaction
of the vortex dipole with the wall. A characteristic feature of vortex dipole interaction
with the wall is its rebound from the wall and the appearance of secondary vortex
structures.

The picture of the flow for smaller fluid viscosity becomes more complicated.
Figure 11 shows the vorticity field with selected streamlines for z:0.00002, a:0.5,
b:0.75. For tirne t: 4 the primary vortex approaching the wall induces a vortex
layer which h.as the vorticity with the opposite sign with respect to the primary
vortices. Then, two recirculation zones (pocket vortices) appear in the wall layer,
one on each side (ź : 8). Tlren, the pocket vortices are pulled firmly upwards and
are torn off (ź:11.2). Eruption of the boundary layer takes place [31-34]. Fluid
particles from the wall area enclosed in the vortex structure are eiected abruptly
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into the flow. The ejected vorticity causes a significant change in the movement of
vortex patches. Primary and secondary structures form pairs which are initially lifted
upwards together. As the circulation of primar;. patches is superior to that of the
secondary ones, the dipole moves along a curve that approaches the wall again (t: 13

to 19). The primary dipole is strong enough to cause separation of other vortices from
the wall at its second passage ź: 19. Then, the vortex patches of the primary dipole
nlove along the wall, increasing the distance from one another. The flow maintains
sl.mmetry as a result of a weak mutual interaction of vortex dipole patches.

5. Conclusion
Vortex methods provide natural, useful tools for analyzing the flow in terms

of vorticity dynamics. It is one of the few methods which give reasonable results at
a wide range of the Reynolds number. The replacing of the non-slip condition for
the fluid on the solid boundary flow on the vorticity generation is accurate enough.
A very quick and robust alternative rnethod to the grid-based methods is provided
using the fast Poisson solvers. The presented methods for 2D can be generalized
for three-dimensions [11, 35 37] and numerical results are encouraged. However, the
number of papers devoted to three-dimensional applications of the vortex method is
by far smaller than for two dimensions. Ftrrther work on the three dimensional vortex
method application is still needed to obtain some degree of maturity.
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