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ABSTRACT. In this paper are presented numerical results that relate to the motion and defor-
mation of a thermal bubble in a gravity field. The study was done using the vortex blob method.
To regularize the initial value problem for the vortex sheet a parameter 62 was introduced in the
Biot-Savart formula. We point out the viscous character of the §2 regularization. The evolution
of circular and elliptical bubbles was studied. The numerical experiments showed great sensitivity
of the evolved forms to the initial conditions.

1. Introduction

In the field of Auid mechanics it is well-known that a density difference between two
Auids eauses motion of the fluids. One of the most important problens within the
general area of pattern formation and bubble mechanics relates to interface defor-
mations. In this paper our interest concerns the evolution of the two-dimensional
bubble in a gravity field when the fluid inside the bubble is slightly less dense than
in an ambient fluid. Gravity causes the lighter fluid to accelerate in the direction of
the heavier one. The interface of the bubble undergoes the classical Rayleigh-Taylor
instability [Sharp, 1984]. The evolution of the bubble progresses to conditions " far
from an equilibrium”. One can expect that the future shape of the bubble will be
very sensitive to the initial condition and will undergo unexpected changes. When
the final shape of the bubble does not resemble its initial one, we may speak about
morphological instability [Langer, 1980] [Sekerka, 1973]. If we make some simpli-
fying assumptions about the physics (see below), the interface between the bubble
and surrounding fluid can be regarded as a vortex sheet. The motion study of the
bubble can be reduced to an initial value problem. Throughout the paper, we will
assume that density variations are small. This allows us to significantly simplify
the evolution equations for the vortex sheet and enables us to avoid some prob-
lems related to nonlinearity of these equations (Kudela 1990ab). Instead of the '
Fredholm integral equation of the second kind, a simple differential equation has f
to be solved. This case still has practical interest, .e.g. in the study of the motion :
of a thermal [Scorer, 1978]. For the solution of the initial value problem we use the
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generalized vortex method described by Baker, Merion, Orszag (1980, 1982). It is
known that the initial value problem for a vortex sheet is ill-posed in the Hadamard
sense [Moore, 1979] [Krasny, 1986a]. At a finite time, the solution has a singularity.
This is a consequence of the fact that the linear approximation yields an arbitrarily
large growth rate for short-wavelength perturbations. From the practical point of
view, the emergence of a singularity is physically unacceptable and shows inade-
quacy of the mathematical model in describing the problem. So it is reasonable to
include certain physical mechanisms like diffusion, interfacial tension or the finite
thickness of the interfacial transition region to regularize the problem. Another
way to regularize the problem is to slightly change the original equations, as was
done by Krasny [Krasny, 1986b] for the Kelvin-Helmholtz instability problem. He
introduced into the formulas which describe the velocity induced by the vortex
sheet (the iBiot-Savart formula) a % parameter in such a way that the singular
integrand is replaced by a smooth one [Krasny, 1986b]. This kind of regularization,
by analogy to the Chorin vortex blob method [Chorin & Bernard 1973] is called
vortex blob regularization. Krasny showed [Krasny, 1986b] that the §2-linearized
equations give a bounded rate of growth for short wavelength perturbations. For
the Rayleigh-Taylor problem it was shown [Bellman & Pennington, 1954] that vis-
cosity causes the linear growth rate to vanish asymptotically with wavelength, and
the same occurs for the 62 equations. So, although the introduction of 62 is a quite
formal procedure and does not correspond precisely to any physical effect, one can
interpret the introduction of the 6% parameter as a trial to mimic fluid viscosity.

2. Statement of the problem and equations of motion

~ We assume that the motion of the fluids is potential, two-dimensional, inviseid,
and incompressible, and that the pressure across the interface is continuous (no
surface tension effects). A rectangular system of coordinates (z,y) is introduced.
The constant acceleration of gravity g acts in the negative y-direction. The densities
of the fluids are constant and change their value across the interface. The density
p1 of the ambient fluid is slightly greater than the density ps of the fluid inside the
bubble. The basic control parameter of the problem is the Atwood number:

A= P1— P2 (1)
p1+p2 :

The interface is described parametrically as (z(e,t),y(e,1)), where ¢ is time and e
is a real parameter € [0,1] which is used also as a Lagrangian variable. At the
mitial instant, the value of e marks a point which follows the motion of the inter-
face. The initial shape of the bubble is described by an ellipse (x(e, 0),y(e,0)) =
(acos(2me),bsin(2me)), where a and b are the large and small semiaxes of the
ellipse. Moreover the ellipse can be rotated by an angle 8, where 8 is the angle be-
tween the large axis of the ellipse and the horizontal z-axis. So the initial position
and shape of the bubble can be characterized by the angle  and the ratio 4 = b/a.
Except for the case of a circle (5 = 1), we present results only for the evolution .
of the ellipse with # = 1/3, a = 1 and for a different angles f. The interface can
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‘be regarded as a vortex sheet with strength equal to the tangential velocity jump
across the interface:

[(s, ) = (up —uy)s°® (2)
where u;,u, are the limiting velocities of the fluids at the interface, s° = unit

% '_ tangential vector, s = arclength. Due to the assumption that p; = p» we apply the
g Boussinesq approximation 4 — 0, g =» oo, such that Ag remains finite, Ag = 1.

Equations describing the evolution of the bubble interface are:
%-tg _ _51; /01 v(f’,i)(yisi)é; yle'\ 1) o 3)
| e | )

where r2 = (z(e, t)—(e/,1))2 +(y(e, ) —yle’,1))?)?, and (e, t) = T'(e, ) (2 4+y2)2.
Equations (3), (4) describe the velocity induced by the vortex sheet (Biot-Savart
i law, where we have already introduced %), and equation (5), in the Boussinesq
: approximation, describes the vortex sheet strength. The units used in (3), (4) are
‘ such that length is scaled by the length of the large semiaxis of the ellipse ¢ and
time is scaled by (a/Ag)!/?. For the rest of the paper we assume a = 1.

3. The numerical approximation

The vortex sheet was divided into N segments and the curve (z(e,t),y(e,t)) was
approximated by (x;, %) = (z(e;, 1), y(es, 1)), e; = th, h = 1/N. The integrals in (3)
and (4) were approximated by the trapezoidal rule at the alternate points [Shelley,
1992]. This yields a system of ordinary differential equations for the trajectories of
the points and their strengths as follows:

: N
dx; h Ye(yi — yr)
— o e A —————— 6
dt Z Tfk+62 . ( )
k=1
k+i=odd
dy; _h i v (& — zp) (1)
d 7 r3 + 62
k=1
k4i=odd
v _ Qii_y.". ’ | o ®)

dt ~ “de

e o g Y

A -
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h.2

9 t= 2.0 t= 3.0 _t= 4.0
2.6 0.0 2.6 '

Fig. 1. Successive stages in the evolution of the circular bubble with 62 = 0.01, ¥ = 600.
The time is indicated in the lower right corner of each frame.

The numerical procedure goes as follows [BMO, 1982]: for known z(e), y(e), v{e)
the interface is marched forward using (6) and (7); next 4(e) is also marched in
time by using (8). The time stepping is performed by using the fourth-order Adam-
Multon predictor-corrector scheme. To start calculations a Runge-Kutta (RKF45)
algorithm was used. The derivative dy/de was calculated by a cubic spline. To
check the accuracy, two invariants of the motion were monitored: the mass S of the
bubble (it should be constant) and the mass flux © through the interface (it should
be zero):

1 r1
5= / yz de Q= / u - nde (9)
g 0

When the relative error for S reached the value 0.025, or Q reached .05, the
calculation was stopped.

4. Numerical results
4.1. MOTION OF THE CIRCULAR BURBLE

A numerical study of this case by the vortex method has already been done by
Meng & Thomson (1978) and Anderson (1985) (but by another vortex method). We
repeated those calculations in order to gain some understanding of the 82 influence.
In Fig. 1 successive stages are shown in the evolution of the circular bubble for
62 = 0.01. The spiral structure on both sides of the vertical axis of symimetry is
clearly visible. In Fig.2 a close-up frame for ¢ = 4. from Fig.1 is presented.

A smaller value of 62 causes greater flexibility of the vortex sheet for roll-up. As
6% approaches to zero, the number of the turns in the spiral structure grows (see
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Fig. 2. Close-up of the frame for { = 4 from fig.1 . The points on the interface indicate the
position of the markers moving with Lagrangian velocity (N = 600}.
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Fig. 3. Successive stages in the evolution of the circular bubble with 6 = 0.1,

also [Krasny, 1986b], [Anderson, 1985]). A large value of §2 prevents any vortex
sheet roll-up at all. In Fig.3 the evolution of the bubble for §2 = 0.1 is shown. To
illustrate the influence of the value of 62, solutions are shown in Fig. 4 which were
obtained for a different 62 (= 0.1, = 0.04, = 0.01) at the same time ¢ = 4.

One can see that while large scales of the bubble suffer only slight changes,
the spiral structure becomes more and more complicated when the value of §2
is decreased. Intuitively a greater value of 67 corresponds to.the effect of greater
viscosity of the fluid. In Fig.5 we present the velocity of the upper point of the
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Fig. 5. Velocity of the upper point of the bubble vs. time. -— 62 =01, ——— 6 =0.04,
o 62 =0.01.

bubble on the symmetry axis vs. time, and in ¥ig.6 the thickness of the cap vs. time
for different values of the % parameter. The rate of change of the total vorticity in
one half of the curve is measured by the thickness Ay of the cap on the symunetry
axis; integration of (5) with respect to ¢ in interval [0, 0.5] gives 2 fOO's y = —2Ay.
Fig.h suggests that a lumit for the bubble velocity may exist independently from
the 62 value. A greater value of % (more "viscous™ fluid) causes a slower raising of
velocity (Fig.5), and the total rate of change of vorticity drops (" dissipates”) more
quickly (Fig.6).

4.2. MOTION OF THE ELLIPTICAL BUBBLE

In actual experiiments the mitial shape of the bubble would most likely not be
circular (of course it would never be two-dimensional as well). For this reason it was
interesting to study the case of the evolution of a bubble that was not circular at the
initial instant. We assumed that the initial form of the bubble would be an ellipse.
Its shape was to be characterized by the ratio of the small axis of the ellipse to the
large one 7 = b/« and by the angle # between the x-axis of the coordinate system
and the large axis of the ellipse. In this paper numerical results are presented only
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Fig. 6. Cap thickness vs time. — 6% = 0.1, — ~ — §2 = 0.04, - -- 62 = 0.01. -
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e | !
e
i ° _t= 1.6 t= 1.8 t= 2.0
! L7 0.0 17
f.
N Fig. 7. Successive stages in the evolution of the elliptical bubble with § = 90, 3 = 1/3,
; &% = 0.01, N = 600.
e
for 8 = 1/3 but with different 8. In Fig.7 the successive stages are shown for the
evolution of the bubble for 7 = 1/3, § = 90° and §% = 0.01. (See close-up portraits
fort = 1.8 and t = 2 in Fig.8)

At first one may be struck by the development of the tail structure. Such a
¢ tail was observed in many experiments {Kojima, Hinch & Acrivos, 1984] [Sparrow,
S Husar & Goldstein, 1970] [Griffithes, 1986]. The surrounding fluid penetrates the
)e bubble near the base of the tail. The tail (fluid thread) is stretched, and its thickness
'e' al some point goes to zero; at this point probably the tail will be separated from
. the bubble ( seefKojima, Hinch & Acrivos, 1984]). Due to the relatively small value
. of 62, the back side of the bubble undergoes very fine deformation and undulation.

The front of the bubble takes the shape of a circle. A greater value of 6% prevents
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Fig. 8. Close-up of the two [rames from Fig.7 for ¢ = 1.8 and ¢ = 2. (8* = 0.01, § = 80", )
N = 600) ' o
od
o
e t= O iJE: 1.0 = 1.6
L2l 0.0 2.1
o
rr; . : %
e _t= 2.0 _t= 2.4 t= 2.8
L2.1 0.0 2.1
Fig. 9. Successive stages in the evolution of the elliptical bubble with 9 = 90, 8 = 1/3,
52 = 0.04.

such fine undulating deformation of the interface. The tail becomes slightly thicker.
Gireater values of §? change the time scale of deformation. Evolution progresses
more slowly (see Fig.9).

In Fig.10 the evolution of the bubble is presented for 8 = 60° and 6% = 0.0
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Fig. 10. Successive stages in the evolution of the elliptical bubble with 8 = 60, 3 = 1/3,
6% = 0.01, N = 800

cr
(9]
Iand
1
Mo
(o

2.3

2|
5

/
/
\9

0.3

t= 1.8
0.0 0.5 1.0 i.

0
-]
L

0

Fig. 11. Close-up of the two frames from Fig.10 for ¢ = 1.8 and ¢ = 2.(6* = 0.01, 4 = 60°,
N = 800)
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Due to the relatively small 62 (compare with Fig.?) the rear side of the bubble was
strongly undulated (see close-up portraits in Fig.11).

e o

As previously, greater values of 6% makes the back side of the bubble smoother
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Fig. 12. Final stages of the elliptical bubble evolution with 8 = 60, 8 = 1/3, §% = 0.04.
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L2.6 1.0 u.8
Fig. 13. The successive stages of the bubble in evolution for 6% = 0.4, § = 60°, N = 600.

(Fig.12).

Greater values of 6% not only change the time scale of deformation and give a
smoothing effect but may also considerably change the shape of the bubble during
the evolution. In Fig. 13 we present the evolution of the bubble for 8§ = 60° (as in
Fig.10) but with 6% = 0.4. Deformation of the bubble progresses very slowly and in
the final stages the front of the bubble 15 composed of a thin thread (see close-up
portraits for { = 7 and ¢t = 8 in Fig.14). |

In Fig.15 the evolution of the elliptical bubble for § = 45°, and 6% = 0.04 is
presented. :

In the following figures we present results for the bubble evolution for the same
initial angle # = 30° and for different §% values, 62 = 0.01, .04, and 0.4. Once more
we can notice the influence on the evolution of the initial angle § (compare with
Fig.10 and 15) and the modification caused by the different values of 2.
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Fig. 14. Close-up portrait of the bubble from Fig.13 for 1 = 7 and ¢ = 8. (62 = 0.4,

g = 60°, N = 600)
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1.0

L.

2.8

c.9

2 t= 2.5 _t= 3.0 t= 3.25
L1.9 0.9 2.8

Fig. 15. The successive stages of the bubble in evolution for §2 = 0.04, 8 = 45°, N = 600.

5. Concluding remarks

This work was inspired mainly by the work of Aref (1987) and Langer (1980) in
the context of "dynamical morphology”. We were interested in the evolution of
the forms that progress in unstable conditions or as one has called it, ”far from
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Fig. 16. The successive stages of the bubble in the evolution for §2 = 0.01, § = 30°,
N = 800.
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Fig. 17. Close-up of the two portraits from Fig.16 for t = 2.8 and t = 3.0 (6% = 0.01,
8 = 30°, N = 800).

equilibrium”. Evolution in such situations inevitably develops strange forms, where
in its final stages such entities should emerge as ”whorls, tendrils and spikes” [Aref,
1987]. Our results indicate that the tail structure appears due to initially non-
circular (elliptical) shapes of the bubble. For the symmetrical case (8 = 1/3, 8 =
190°) our results agree qualitatively, despite the two-dimensionality of our model,
with the experimental investigation of Kojima ef al (1984) (up to the moment
when in the experiment the tail was cut off from the bubble) and the numerical one
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Fig. 18. The successive stages of the bubble in the evolution for 82 = 0.04, 8 = 30°,
)
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Fig. 19. The successive stages of the bubble in the evolution for §° =

N = 600)

[Pozrikidis, 1990]. As we expected, the shape of the bubble during its evolution is
sensitive to the initial condition (the angle #). We did not refer to the problem of
the existence of the limit solution when § — 0 (see [Krasny, 1986b]). Our feeling is
that such a limit may not exist in the case of Rayleigh-Taylor instability but that
some other indications like velocity may converge as é — 0. Blob regularization
gives results which look more realistic than without it. The §2 value may strongly
modify the bubble evolution. Due to the simplicity of the mathematical model

- 203

Vo YA T o 150 TR RS 5 A i G £ e AR M e 11 e AL TR

0.4, (6 = 30°,




Mok -0.7 1.0 2.7 U,y

Fig. 20. Close-up of the two portraits from Fig.19 for t =85 and ¢t = 10. (6 = 0.4,
g =30 ‘

and a not very involved numerical algorithm, the program is very convenient for
investigation of diverse aspects of morphological instability.
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