nenf

THE INFLUENCE OF SURFACE-TENSION EFFECTS ON USING
VORTEX METHOD IN THE STUDY OF RAYLEIGH-TAYLOR INSTABILITY

Henrvk Kudela
Technical University of Wroclaw, 50-370 Wroclaw, Poland

SUMMARY

The effect of surface-tension on the smoothing of irregular motion of vor-
tices in the vortex simulation of Rayleigh-Taylor instability is shown.
The irregular motion appears as an effect of short-wave disturbances the
source of which is round-off error. Inclusion of surface tension allows
the observation of the formation of singularities. The singularities make
an infinite jump discontinuity in the curvature of vortex sheet. It is ob-
served that for sufficiently small Atwood number and for initial amplitude
perturbation large enough two singularities appear in a half period of the
vortex sheet and that only one appears for greater Atwood numbers.

INTRODUCTION

Rayleigh-Taylor (R-T) instability occurs on the interface between two
fluids with different densities when the less dense fluid is accelerated
in the direction of the denser one [5]{14]. With some simplified
assumptions, the interface can be regarded as a vortex sheet, and the in-
vestigation of its evolution can be reduced to the solution of an initial-
value problem. For the solution of this problem we can use a method based
on boundary integral techniques. The vortex-sheet formulation described by
Baker,Meiron,Orszag (B-M-0) [2] was chosen. The method was successfully
used for the case when Atwood number AZ(pl—pz)/(p1+p2),p1>.o2 was equal

one. The method failed for 0<A< 1. The 1linear approximation of R-T,
without any stabilizing mechanism, gives an arbitrarily large growth rate
of short-wave length perturbations [5]. In computations, the source of
short-wave perturbations is round-off error due to finite precision
arithmetic {9], and without any stabilizing mechanism it leads to the
deterioration of calculations. Similar to Kelvin-Helmholtz instability
one may say that the problem is 1ill-posed in the Hadamard sense
[91,{11],[13]. To suppress the chaotic, irregular motion of vortex points
in numerical study of vortex sheet evolution many tricks were introduced
[12]1[9]. In this paper it was demonstrated that in the R-T problem the
inclusion of surface- tension effects can suppress the irregular motion of
vortex points. This permits one to observe the process of singularity
formation. The surface tension provides a small-scale stabilizing
mechanism which dogsn”t remove the ill -posedness of the problem. To do
this a parameter & was introduced in the Cauchy-type integral to cut-off
the singularity of integrand (10] [8] .In this situation, the surface
tension effects caused also the lengthening of time interval in which
numerical solutions could be obtained.

STATEMENT OF THE PROBLEM

It is assumed that the motion of the fluids is potential, two-dimensional
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and that the fluids are inviscid. A rectangular system of coordinates
(x,y) is introduced. Before introducing a perturbation of the interface
the fluid with density pl (pz) occupies the upper (lower) half plane and

pl>pz.A constant gravitational field g acts in the negative y-direction.
Both pl and pz are constant and there is a density jump at the interface.

The interface is described as a complex curve z(a,t)=x(a,t)+iy(a,t),
where"a" 1is regarded a Lagrangian parameter. It is assumed that the
interface and the disturbance are periodic in the x-direction with

wavelength KP_ So a [O,aO] and an increment a to a, gives
% = AN
7(a+ao,t) z(a,t) + b (1)

The normal velocity component on the interface is continuous and the
tangential velocity component on the interface may have Jump. So the
interface can be regarded as a vortex sheet with intensity:

e [3]

C(s,t) = (4, - uds” = — 5= (2)

where u,,u, are the velocities of the upper and lower fluids at the
interface ,§°:unit tangential vector,s-arclength, [&]-jump of the value of

the potential across the interface ,t= time.

At t=0, the fluid is assumed at rest; then the flat interface y=0 is
perturbed and has the form y(x,t)==(t)cos Kx for t>0. In the linear
approximation [5] [14] it is known that the amplitude £(t) will behave
like £(t)==(0)cosh wt where

P17~ Py o

K Py T Py K_pl+p2

K> (3)

and where ¢ is the coefficient of interfacial tension ,K =2m/x.

From (3) we can see that for o¢=0,then @ >0 and the interface is
unstable.The growth rate for short wavelengths is unbounded. Inclusion of
surface -tension effects (o#0) stabilizes the perturbations shorter than a
critical wavelength

o 1/2

e o[ ] =
c g (P1-Py)

To put the further equations in non-dimensional form we choose kp as a

unit of length , vrié/Ag as a unit of time and the
2

surface-tensions coefficient was normalized by g(pi—pz)RP.

THE GOVERNING EQUATIONS

By virtue of the Biot-Savart law, the velocity induced by the periodic
vortex sheet at a point on the sheet can be expressed as:
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1 1
q*: u(a,t)-iv(a,t)= “EE f Y (a”,t)cot m(z(a,t)-z(a",t))da" (5)

0

2)1/2
a

the dash on the integral sign signifies Cauchy principle value.

The vortex sheet will be replaced by a suitable distribution of vortices
(Lagrangian points) each labelled by a parameter "a". The later position
of those points allow the determination of the interface shape. We define
the Lagrangian point velocity on the vortex sheet as follows [4][3]

where Y(a,t):F(a,t)(X§+y The subscript denotes a differentiation and

Iz 9 * 9 9D -
at - 2 Ve T 8)

where q4,95are the upper and lower limits of the fluid velocities on the

interface, anda € [-1,1] is a weighting factor.Note that for &=0 the
Lagrangian point is non-material and for a=-1(1) it follows the upper
(lower) fluid at interface. In this way we retain some control over the

positioning of the Lagrangian points. By virtue of the Sochocky-Plemelji
formula {10] (see also [4])

v
X * R
W2 T ¢ ) 2z L

The velocity of a Lagrangian points on the interface can be expressed as:

¥

a2z ” Y

= = + o . (8)
ot a Zza

To equation (8)(5) there must be added the equation for vortex-sheet
strength due to baroclinic generation of vorticity.This equation is [3 ] :

. 1 ux vy, 18 yz 158 yz
=2A (Re(q,z )- Sy —QF— 4 Z 727 —., +7N o, — ) +
Yy tZ%a’” 2 X 8 da x T 2%8s %
zZ z z z PN
a“a a‘a / a%&
1 a3 y‘d
Y2y, - 29k, + 5" @ 5, % » (9)
Z Z
a‘a
where k=(xy -y X )/(x2 +y2 )1'5 = the curvature of wvortex sheet, o =
a’aa “a’aa’ A% & ;

the non-dimensional coefficient of surface tension. The time derivatives
Xk . q
qt are obtained by differentiation of (5). After substitution of these

derivative in (9) we obtain:
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1

vy = A fg vy Bda® + r(x,y,u,v,r) (10)

sinh 2r(y(a)-y(a”))
where B = -x +
® cosh 2n(y(a)-y(a”))-cos2r (x(a)-x(a”)

sin27 (x(a)-x(a”))

Ya cosh2n (y(a)-y(a”))-cos2rn(x(a)-x(a”))

and r( ) does not depend on yt. Eq. (10) represents a Fredholm integral

equation of the second kind and is solved iteratively.

As has already been mentioned in the introduction,the initial value
problem for R-T is ill-posed. The solution within a finite time vields a
singularity which is an infinite jump in the curvature. In order to
regularize the problem the singularity of the integrand of the Cauchy
-type integral is cut off. Components of velocity of equation (5) are now:

1 1 sinh 2a(y(a)-y(a”)) da”

u(a,t)=- — (5a)
2 0 cosh 2n(y(a)-y(a”))-cos2r(x(a)-x(a”) +62
1 1 sin 2r(x(a)-x(a”)) da”

DCUDS O fs cosh2n (y(a)-y(a"))-cos2n (x(a)-x(a")) + 62 (ol

Now the integrals in (5a,b) are not singular and if we calculate with the
assistance of (H5a), the acceleration UV, eq. (10) also will not have a

singular integral. In the case of weak stratification when pl/p2 — 1,

instead of (9) there is often utilized the Boussinesq asymptotic
approximation . We take A —» 0 and g — o21in such a way that the product
Ag goes to a finite limit [15]. Equation (9) takes the form (=0 ):

Ye T 2ya —ZOka . (Sa)

Equations (8),(10) constitute the complete description of the evolution
for the interface. The numerical procedure goes as follows [3]: for known
x(a),y(a),¥(a) the interface is marched forward using (8),(5) and next
inhomogeneous term r( ) in (10) is calculated. Then the integral
equation (10) is solved iteratively for vy and finally » can also be

marched in time. When we use Boussinesq approximation ((92a) we do not need
to solve integral equation and " is simply calculated from (9a). The

time stepping is performed, as in (3] by using a fourth -order
Adams-Moulton predictor-corrector scheme. All derivatives with respect to
the Lagrangian parameter "a" were computed using cubic spline. All Cauchy

type integrals were regularized by subtraction of integral with a known
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principle value [3] and integrals were calculated using trapezoidal rule
on alternate sets of points [41].

NUMERICAL RESULTS

Results presented below were obtained on an IBM PC-AT in double precision
(15 decimal digits) arithmetic using RMFORTRAN. The number of vortices
accepted for calculations is N=120,time step At=0.004. Fig.la,b shows
solutions for A=1 (91/92: -0 ,the so-called single fluid case ). Fig. 1la

shows a time sequence of interface profile y(x,t) and fig.1lb shows a time
sequence of vortex sheet strengths I'(a,t) vs Lagrangian parameter "a".
v(x,0)== cos2nx ,£=0.5/2r was the initial condition. Such an amplitude
makes possible a comparision results with [2]. These single fluid case
results were described precisely by B-M-O [2] and can be regarded as an
"exact” solution [15]. They make a good test for the numerical program.
The points on the curve indicates the positions of vortices along the
interface. For o in (6) we took a=-1. This means that vortices move like
particles of upper fluid.

b)

. .
- ’ ¥ N Vg

1 1 EEa |
.00 0,25 0,50 x 0,79 1.00 oo 0,50 a 1,00
2

Fig.1l. Numerical results for A=1l,0=-1,6 =0,o=0.a)interface profile y(x,t),
b) vortex sheet strength I'(a,t)

Fig.2a)b)c) show numerical results for A=0.0476 (pl/p2:1.1),020 and £=0.1.

Fig.2a shows the time sequence of interface profiles (only half a period),
fig.2b the time sequence of the curvature k(a) of the interface and fig.2c
shows the time sequence of the vortex sheet strength I'(a). The inspection
of curvature is a good means for checking the smoothness of the solutions
and it shows the symptoms of the regularity loss of the solution earlier
than one can see on interface profile. In fig.2b for t=0.74 one can see
the irregular, noisy changes of curvature at intervals where vortex sheet
strength has its maximum approximately.It is due to Helmholtz instability.
Those noisy changes start little earlier and their amplitude grows in time
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Fig.2 Numerical results for A=0.0476 (pl/p2:1.1), 62:0; o=0, o=0,

¥(x,0)=0.1cos2rx, a)time sequence of interface profile y(x,t),
b) curvature-k(a,t), c) vortex sheet strength '(a,t)
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Fig.3 The time sequence of close-up fragments of interface created the
same particles for A=0.0478, o=0.

Fig.3 shows the time sequence of the close—-up fragments of the interface
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matched by the frame in fig.2a t=0.784. These fragments are created by the
same particles. For t=0.784 there can be seen distinctly the irregular
positions of the vortices. Fig.4a)b) show the time sequence of curvature
and strength of vortex sheet in the case when the surface-tension effects
are included. For the value of coefficient of interfacial tension we took

0:5*10—4-Now the noisy ,chaotic changes don”t appear in the curvature.The
curvature distribution for t=0.824 has two peaks and typical tips appear
in distribution of vortex sheet strength.

L}

a Lo o
Ve i ~ S
" o 1 ' l 2 by i 1| ‘k\,_,,,, '_\Ic I'
a) 11. : / - : - :
5 ' I |-_.. il ' ; ‘4 E [amn] "
Ik -\,1 ----- f - T+ - } s o= Al = ® o) -r--'-—"r-r— '_‘ ‘L—-—-
T - '
L 4 .
== k ) ] ' | C"_‘ '
p [1=074 = o | 1=0784 S | t=0824
| f 1 t I '
c3D'UU 0.0 a 1.00 .00 .50 a 1.00 .00 0.50 a 1.00
ol .
b) ' ' L- '
r_ L] B L 1 =y 1]
: .-"f 3 ‘\"’x, : ;,x"l. \"-.. , .-""}b“ﬂ]"\..
o i "xl o RH f) N,
D_“ﬁ """ éf """ [ ff' = M, {f """ ]
5“| _." '-__" “n"r : \.N '.'_1
e N '
- -
1 I— ;
0. a0 0.50 a 1.00 a “

Fig.4 The time sequence a) the curvature k(a,t), b) the vortex sheet
strength '(a,t) for for the same data as in fig.2 but with surface
tension effects =0.0005.

Fig.5 shows the time sequence of the close-up fragments of the interface
created by the same particle as in fig.3. The origination of cusps is vi-
sible and it can be related to the formation of singularities.The suppres-
sion of the irregular motion of vortices is evident. The formation of two
singular points is connected with large initial amplitudes of perturbation
(£=0.1).For £=0.01 we can observe only one singularity along half a period
of the interface. Fig.6a shows the time sequence of close-up fragments of
interface and figs.Bb,c show examples of the curvature distribution and
vortex sheet strength for time t=1.48.The results which relate to the sin-
gularity formation which I present here ,are very similar to the results
presented by Krasny [9]. For larger Atwood number in spite of £=0.1 only
one singularity is originated. The singularity point moves towards the
point of symmetry x=0.5. Fig.B8 shows results for A=0.5. Fig.Ba shows the
time sequence of close-up of interface fragments and fig.8b,c the example
of curvature -k(a) and vortex sheet strength TI'(a) for t=0.8.The
singularity formation in solutions is the main reason the B-M-O0 method
failed for 0<A<l. Fig.9 shows the tim% sequence of the profile interface
for the desingularized equations for 67=0.1, A=0.0476, ©=0.0005, a=0. The
inclusion of surface-tension effects increases the time interval for
which the iteration process for Yt converged.
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Fig.5 The time sequence of close-up interface fragments for included
surface-tension effects ©=0.0005, A=0.0467, a=0, £=0.1.
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Fig.6 Numerical results for data as in fig 5 but with initial amplitude
€=0.01, a)time sequence of the close-up fragments of interface, b)
curvature -k(a) for t=1.48, c)vortex sheet strength I'(a) for t=1.48
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Fig.7 Numerical results for A=0.5 (pl/p2:3), ©=0.0005, o=-0.2, =£=0.1,

a)time sequence of close-up fragments of interface b) curvature of
vortex sheet -k(a) for t=0.8 c) vortex sheet strength '(a) for t=0.8.
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Fig.8 The time sequence of interface profile for desingularized equation
52-0.1,A=0.0476,0=0.0005,0=0, £=0.1.

Fig.9a,b show the time sequence profiles, with and without surface tension
for A=0 (Boussinesq approximation ),% =0.1,2=0,and for a more complex
two-wave 1initial perturbation as was described by Aref [1]. Viz.
y(x,O)zslcoszrix + é:zcosé‘ﬂx ,where 81,52 were chosen in such a way that the

initial profile had six inflection points. As can be seen in fig.Sa
(0=0), six vortices grow from these six inflection points. But in fig. 9b
the surface-tension effect prevents the initiation of the vortex in the
line y=0. We choose N=200, and the coefficient for interface surface ten-
sion @ is two times greater than in previous run viz. o=0.001. This smo-
othing action of surface-tension effects is in good qualitative agreement
with the results obtained by Daly in numerical study of the R-T instabili-
ty by the marker-in-cell method for full Navier-Stokes equations [6].

=g =12 =16 7

0.00  0.50 x 1.00 x "

Fig. 9. Numerical results for y(x,0)= 0.lcos2nx + 0_.07cosénx, A=0, a=0,
(_52:0_1, N=200 a) «=0, no surface-tension b) «=0.001
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CONCLUSIONS

The inclusion in the R-T problem of surface-tension effects causes the
suppression of irregular motions of vortices. Singularity formations are
the main reason why the B-M-O0 method fails for, 0<A<l. After
desingularization of the equation of motion by the éA—parameter the
surface tension also smoothes the numerical results and causes lengthening

of the time interval for which the iteration process for ¥, converges.

Due to nonlinearity of the evolution equation for the vortex sheet
strength after a certain time interval we obtained a nearly singular
distribution of vortex sheet strength and finally the calculation broke.
Alternative to direct summation method,very efficient computationally are
vortex-in cell methods described by Tryggvason [15]. But as Tryggvason
says "grid free method although considerably more inefficient"...than
vortex in cell method.." offers a ‘cleaner" environment (no grid
disturbances) to study such delicate questions as singularity formations
and how to apprly proper regularizations'.
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