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THE INFLUENCE OF SURFACE-TENSION EFI'ECTS ON USING

VORTEX METHOD IN THE STUDY OF MYLEIGH-TAYI.OR INSTABILITY
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SUMMARY

The effect of surface-tension on the smoothing of irregular motion of vor-
tices in the vortex sirnulation of Rayleigh-Taylor instability is shown-
The irreElrlar notion appears as an effect of short-wave disturbances the
source of which is round-off error- lnclusion of surface tension allows
the observation of the formation of singuLarities- The singularities na-ke
an infinite junp discontinuity in the curvature of vortex sheet. It is ob-
served that for sufficiently small Atwood munber and for initial arnplitude
perturbation large enough two singrrlarities appear in a hal-f period of the
vortex sheet and that only one appears for greater Atwood numbers-

INTRODUCTION

Rayleigh-Taylor (R-T) instability occurs on the interface between two
fluids with different densities when the less dense fluid is accel-erated
in the direction of the denser one tslt14l. With some sinplified
assunptions, the interface can be regarded as a vortex sheet, and the in-
vestigation of its evolution can be reduced to the solution of an initial-
value problem- For the solntion of this problem we can use a nethod based
on boundary integral techniques. The vortex-sheet formulation described by
Baker,Meiron,Orszag (B-M-O) 12) was chosen. The method was successfully
used for the case when Atwood m:mber A=(pr-p2)/@r+cr),pr>p, was equal
one. The method failed for 0<A< 1- The linear approximation of R-T,
without any stabilizing mechanism, gives an arbitrarily large growth rate
of short-wave length lrcrturbations tsl- In computations, the source of
short-wave perturbations is round-off error due to finite precision
arithnetic [9], and rłithout any stabilizing mechanism it ]eads to the
deterioration of calcuLations- Similar to Kelvin-Helmholtz instability
one may say that the problen is ill-posed in the Hadarnard sense
[9],[11],[13]- To suppress the chaotic, irregular motion of vortex lnints
in numerical study of vortex sheet evolution many tricks were introduced
t12lt9l- In this paper it was denonstrated that in the R-T problern the
inclusion of surface- tension effects can suppress the iruegular motion of
vortex points. This perrnits one to observe the process of sinEularity
forrnation- The surface tension provides a small-scale stabilizing
mechanisn which doęsn-t renove the ill -posedness of the problem- To do
this a parameter óo was introdtrced in the Cauchy-type integraI to crrt-off
the singularity of integrand t10l t8l -In this situation, the surface
tension effects caused also the lengthening of time interval in which
numerical sohrtions could be obtained-

STATEMENT OF THE PROBLEM

It is assumed that the motion of the fhrids is potential,two-dimensional
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and that the f lui-ds are inviscid- A rectanguJ-ar system of coordinates(x,y) is introduced- Before introducing a pertnrbation of the interface
the fluid with density pt @) occupies the upper (lower) half plane and
PIrPZ-A constant gravitational field g acts in the negative y-direction-
Both p1 

"1d Po are constant and there is a density jurnp at the interface.LZ
The interface is described as a conplex curve z(a,t)=x(a,t)+iy(a,t),
where"a" is regarded a Lagrangian paramęf,gp- It is asstrmed that the
interface and the disturbance are periodic in the x-direction with
wavelengtn 

^n. 
So a € [O,aoJ and an increment a to ao gives

z(a+ao,t)= z(a,t)+\p. (1)

The normal- velocity component on the interface is continuous arrd thetangential velocity component on the interface may have jr:np- So the
interface can be regarded as a vortex sheet with intensity:

a tol
I-(s,t) = (u^ - u. )so =-4 -r-

where !r,9., are the velocities of the upper and lower fluids at the_L -Z
interface ,so=unit tangential- vector,s-arclength, i6l-jr:np of the value of
the lntential across the interface ,t= time.
At t=0, the fluid is assumed at rest; then the frat interface y=o isperturbed and has the form y(x,t)=e(t)cos Kx for t>0. In the linear
approxirnation tsl t14l it is known that the arnplitude .:-(t) will behavelike e (t)=e (0)cosh <,:t where

2(i)=o
Pr- Pz

K-Pr* Pz Pr* Pz

and where cl is the coefficient of interfacial tension ,K =2nĄ-From (3) we can see that for o=O,then c,l >O and the interface is
unstable-The growth rate for short wavelengths is unbounded- Inclusion of
surface -tension effects (qł0) stabilizes the perturbations shorter than acritical wavelength

r o _tl/z
X. =2łz Le_GF;) ] (4)

To put the further equations in non-dimensionar forn we choose \ as a

mit of length , | >,_/AS as a 'nit of tine
It

strrface-tensions coefficient was normalized by g(p, -p.)>rz -

P

and the

THE GOVERNING EQUATIONS

By virtue of the Biot-savart law, the velocity induced by the periodic
vortex sheet at a point on the sheet can be expressed as:
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q*= .t(a,t)-iv(a,t)= (a-,t)cot n (z(a,t)-z(a-,t) )da- (5)

where i'(a,t;=l-(a,t)1x2+y2 lL/Z fy" subscript denotes a differentiation and
the dash on the integral sign siEnifies Cauchy principle va1ue.
The vortex sheet will be replaced by a suitable distribution of vortices
(tagrangian points) each labelled by a parameter "a" - Ttre later position
of those points allow the determination of the interface shape- We define
the Lagrangian point velocity on the vortex sheet as follows t4lt3l

11
nł,

0

(6)
lz
rt

t:*"

91*92

points on the

qz- ql
+ą

where 91:92are the upper and lower linits of the fluid velocities on the
interface, anda € [-1,1] is a weiBhting factor.Note that for a=0 the
l,agrangian point is non-material and for a=-1(1) it fo]lows the upper(lower) fluid at interface- In this way we retain some control over the
lnsitioning of the L,agrangian points- By virtue of the Sochocky-Plemelji
fornula [10] (see also [4])

*q1(z) = q (7)

interface can be expressed as:

*y
(+) 2z

v

*oń

Ttre velocity of a Lagrangian
*

Oz' x
at =q

a

To equation (8)(5) there must be added the equation
etrength due to baroclinic generation of vorticity-This

(B)

for vortex-sheet
equation is [3 ] :

ux +vva a a-a 1A
r r=2A (Re(qf2")-

+2v - 2ok-a a

1

żo r

r)7aT"*To t" x 'zz
cl Ćt

LLaa
8t; -*+zz

ct d-

.2
T
J)*zza\ą

where k=(x v' a- aa Y"*".
the non-dinensional
*9, are obtained by

derivative in (9) we

)/{x2^+vz.)t'u = the curvature
coefficient of surface tension"
differentiation of (5)- After
obtain:

(e)

of vortex sheet, o =

The tine derivatives
substitution of these
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ŁrBda' + r(x,y,u,v,2,) ( 101

sinh 2a (y(a)-v(a- ) )
where B = -xa cosh 2n(y(a)-y(a- ) )-cos2tt (x(a)-x(a' )

sinZa(x(a)-x(a- ) )
v" coshZn (y(a)-y(a- ) )-cos2a (x(a)-x(a- ) )

and r( ) does not depend on rr. Eq- (10) represents a Fredholm integral
equation of the second kind and is solved iteratively-
As has already been mentioned in the introduction,the initial valueproblen for R-T is ill-psed- The solution within a finite tine yields asingularity which is air infinite junp in the curvature. In order toregularize the problen the eingularity of the integrarrd of the Ćauchy
-type integral is cut off- Conponents of velocity of equation (b) are now:

sirń 2n(v(a)-v(a- ) ) da'u(a,t)-- (5a)
cosh Zn(y(a)-y(a - ))_cos}n(x(a)-x(a') +ś

sin 2n(x(a)-x(a') ) da'.v(a,t)= cosMa (y(a)-y(a- ) )-cosZn (x(a)-x(a- ) ) +
'.?
Ó (5b)

Now the integrals in (5a,b) are not singular and if we calculate with theassistance of (5a), the acceleration ua,va, €9- (1o) aIso will not have a
singular integral- In the case of weak stratification when pL/pZ ----, 1,
instead of (9) there is often utilized the Boussinesq asymptotic
approxj-mation We take A 

--ł 
0 and g ---+ oo in such a way thai the product

Ag goes to a finite linit t151. Equation (9) tales the forrn (a=0 ):

T t = Zyu -Żok^ ' (9a)

Equations (8),(10) constitute the conplete description of the evolutionfor the interface. TLre numerical procedure goes as follows t3l: for knownx(a),v(a),v(a) the interface is narched forward using (g),(s) and ne>rt
inhomogeneous tern r( ) in (1oy is calculated. Then'the integralequation (1o1 is solved iteratively for YŁ arrd finally Y can also be
marched in time- When we use Boussinesq approximation ((9a) we do not needto sorve lntegral equation and r, is simpry calculated fron (9a)- The
tine stepping is perforned, ds in t3l by using a fourth -orderAdams-Moulton predictor-corrector scheme- AlI derivatives with respect tothe Lagrangian parameter "a" were conputed using cubic spline. AII Cauchytlrye integrals were regularized by subtraction of integral with a known
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principle value t3l
on alternate sets of

and integrals rłere calculated using trapezoida} ru}e
pints [4J.

NU},IERICAL RESULTS

Results presented below were obtained on an IBL{ PC-AT in double precision
(15 decimal digits) arithrnetic using RI'IFORTRAN' The number of vortices
accepted for calculations is N=12O,tirne steP at=o-004- Fig'1a,b shows

solulions for e=i- rir/łr= o'o ,the so-cal}ed single fluid case )' Fig- 1a

shows a tine sequence of interface profile y(x,t) and fig-1b shows a tirne

sequence of vortex sheet strengths l-(a,t) vs Lagrangian parameter "a"'
y(x,o)=s cosznx ,e=Q-$/ln r"" th" initial condition- such an amplitude
makes possible a comparision results with LZ)' These single fluid case

results were described precisely bV B-M-O l2l and can be regarded as a11

,.exact.,solutiontls].Theymakeagoodtestforthenunericalprogram.
The points on tńe curve indicates lhe positions of vortices along the

interface. For a in (6) we took cx=-1' This means that vortices move like
particles of uPPer fluid-

=
E

r=

OJ

b) c-
o)

il. tl:l 0. il:i r.l. Et-l x [1. 'rlr f r:1.:ir:l o l.t][

Fig- 1- Nr:merical
b) vortex

results for A=1,d=-1,62=0,r/=0-a)interface profile Y(x,t),
sheet strength tr(a't)

Fie-Za)b)c) shovł numerical results for A=O -0476 (łr/cr=t.1),o=g and e=0'1'

Fig-Za shows the tine sequence of interface profiles (only half a period)'
fig-Zb the tine sequence of the curvature k(a) of the interface and fte'Zc
shows the time 

".q.1]"rr"" 
of the vortex sheet strength r(a)'The inspection

of curvature is a good means for checking the smoothness of the solutions
and it shows trre s'}nnptorns of the regulu"lty loss of the sol-ution earlier
than one can see on interface profile_ In fig_Zb for Ł=0-74 one can see

the irreEular, noisy changes of curvature at intervals where vortex sheet

strength has its maximum approximately.It is due to Helmholtz instabilitv-
Those noisy changes start rittr. earlier and their amplitude grows in time
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Fie-Ż Nunerica]- results for A=0-0476 (cr/cr=I-L), 6L_O, 6'=0> 61-0,

y(x,0)=0-lcosZnx, a)time sequence of interface profile y(x,t),
b) curvature-k(a,t), c) vortex sheet strength I-(a,t)
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Fig-3 The time sequence of cl-ose-up fragnents of interface created the
same particles for A=0-0476, o=0-

Fig-3 shows the tine sequence of the close-up fragnents of the interfaee
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natched by the frame in fig-2a t=O-784' These fragnents are created by the
sane particles- For t=0.784 there can be seen distinctly the irreEular
fnsitions of the vortices- Fig-4a)b) show the tine sequence of curvature

"td "t""rrgth 
of vortex sheet in the case when the surface-tension effects

are included- For the value of coefficient of interfacial tension we took

a=bx1O-4-Now the noisy ,chaotic changes don't aPpear in the curvature-The
curvature distribution for t=O-824 has tvro peaks and typical tips appear

in distribution of vortex sheet strength'

o 1.00 " r:10 lt.00 [.50 o 1.00

OJ
b)

t_

0. 0l:l rl. :i0 o I . 00

B11g-  The time sequence a) the curvatpre k(a,t), b) the vortex sheet
strength f(a1) for for the same data as in fig-Z but with surface
tension effects o=0-0005-

Fig-5 shows the tine sequence of the close-up fragDents of the interface
cróated by the sane p".ti"l" as in fie-3- The origination of cusps is vi-
sible and it can be related to the formation of singularities'The suppres-
sion of the imegular rootion of vortices is evident. The formation of two

sinEular points ii connected with large initial arnplitudes of perturbation
(r=-0.1)-For a=0-01 we can observe only one slnEularity along half a period
of the interface- Fig-6a shows the time sequence of close-up fragnents of
interface and figs-6ń,c show examp1es of the curvature distribution and

vortex sheet strength for time t=1-48-fhe results which relate to the sin-
gularity fornatioń which I present here 'are very sinilar to the resuIts
ńresented by Krasny [9]. Fór larger Atwood number in spite of a=0-1 on]y
ó'u singplarity is óriginated- The singu}arity point moves towards the
point of symrnetry x=O-S-- Fig-B shows results for A=0-5- Fie-Ba shows the
time sequence of close-up of interface framents and fig.Bb,c the exarnple

of curvature -k(a) and vortex sheet strength I-(a) for t=0'8'The
singUlarity fornation in solutions is the nain reason the B-M-O method

failed for OcA<l- Fig-9 shows the tinq sequence of the profile interface
for the desinEu]arizł equations for ó'=O-1, A=0'0476, O=o'0005' d=0_ The

inclusion of surface-tension effects increases the time interval for
which the iteration process for fa converged'
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Fig.S The tine sequence of close-up interface fpaEnents for included
surface-tension effects o=0-0005, A=0 -0467, cx=O, e=0.1-

0. zt:J D. 25; x n. 3n 0. [t]
Fig-6 Numerical results for data

e=0-01, a)tine seguence of
curvature -k(a) for t=1-48,

b)

t='1.4I

[. :itt 1

as in fie 5
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c)vortex sheet
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of interface, b)

I- (a) for t=1.48
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Fie.7 Numerical results for A=0-5 (Cr/Cr=S), c'=0-0005,

a)time sequence of close-up fraEments of interface
vortex sheet -k(a) for t=O-B c) vortex sheet strength
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Fig.8 The time sequence of interface profile for desingularized equation

ó2=O -1,A=O -0476,o=Q-ooo5,d=O, e=0' 1 -

Eig-9a,b show the tine sequence profil.g with and without surface tension
for A=0 (Boussinesq approxination ),64=0.1,cr=9,*t6 for a more complex

two-wave initiat perturbation as was described by .Aref t1l' Y:-z'

;i;,ó';r"ó"z',* i r'rcos}rrx ,vrhere ,L,rŻ were chosen in such a way that the

initial profile had six inflection points- As can be seen in fig' I a
(cr=o), six vortices grow fron these six infl-ection points- But in fig- 9b
the surface-tension effect prevents the initiation of the vortex in the
Iine y=Q- We choose N=200, and the coeffiCient for interface surface ten-
sion o is two tines greater tban in previous nrn viz. a=0.001- This sno-
othing action of suriace-tension effects is in good qualitative agreement

with the results obtained by DaIy in numerical study of the R-T instabili-
ty by the rnarker-in-cell nethod for fuII Navier-Stokes equations [6]-

Er

o) >.'

rc'0.110
cl

b) >

0.00 r:t.50 x 1.00
Fig- 9- Numerical results for y(x,0)=

x

O - lcosZnx + O - O7cos6tt x, A=0, 61=0,

c
f,

't
c

I
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CONCLUSIONS

The inclusion in the R-T problen of surface-tension effects causes the
suppression of irregular motions of vortices. Singularity fornations arethe main reason why the B-M-o nethod fairs for^ o<A<1- Afterdesingu1arization of the equation of notion by the óZ-parameter the
surface tension also smoothes the nunerical results and causes lengtheningof the tine interval for which the iteration process for r, converges-
Due to nonlinearity of the evolution equation for the vortex sheetstrength after a certain time interval we obtained a nearly singulardistribution of vortex sheet strength and finally the calculation broke_Alternative to direct sr:nmation method,very efficient computationally arevortex-in cell rnethods described by Trygglrason tlbl- But as Tryggvasonsays "grid free method although considerably more inefficient".--than
vortex in cell nethod- - " offers a "cleaner" environment (no grid
disturbances) to study such delicate questions as singularity formations
and how to apply proper regularizations" _

I wish to thaxk Professor Chąrles Zenach fron los Alamos Lab- forcareful linguistic checking of the nanuscript- My work was supported by
Central Program of Funda:nentaL Research (CPBP OL-OZ, X.14)-
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