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Abstract
The boundary-layer eruption phenomenon caused by a 2D patch of vorticity
above a wall was investigated. It is shown that the eruption phenomenon
depends on the viscosity (or Reynolds number, Re) of the fluid. There exists
a threshold value of Re above which the eruption takes place. The initiation
of the eruption goes through the creation of a small recirculation zone near
the solid wall, the appearance of the saddle point on streamlines inside it
and the tearing off process of the recirculation zone. Further increase of the
Reynolds number causes a more complex flow. One can observe that eruption
is regenerative and that the vortex patch can produce a cascade of secondary
vortices. The vortex-in-cell method was employed to investigate the eruption
phenomenon.

1. Introduction

The processes involved in unsteady boundary-layer separation are important in understanding
the self-sustaining mechanism of near-wall turbulence (Panton 2001, Perry and Chong
1982). Especially important are the processes related to the regeneration of turbulence in
the boundary layer. The regeneration mechanism is connected with the breakdown in the
boundary layer and the intense eruption of vorticity from the wall. In an incompressible flow,
vorticity can be generated only on the rigid wall.

Vortex production on the wall is forced by the fluid viscosity (no-slip condition) in
conjunction with the effect of the pressure gradient on the boundary. The production of
vorticity on the wall can be interpreted as necessary for the no-slip condition (Batchelor 1970,
Bradshaw 1996). Introduction of vorticity from the wall can take place through short-range
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Figure 1. Prandtl’s sketch of the streamlines and velocity profiles in the vicinity of the separation
point. At the stagnation point S, the shear stress τs =

∂u
∂y = 0. On the right of the stagnation point,

reverse flow is established.

diffusion, as in laminar flow, or can happen abruptly through vorticity eruption from the wall
layer (Kudela and Malecha 2007, Smith and Walker 1996). Here, ‘eruption’ means sudden
injection of vorticity generated near the wall into the outer region. This process feeds the
outer region with a new portion of concentrated vorticity.

In this paper, to gain some idea about the regeneration mechanism of the vorticity
production on the wall, we investigated numerically the two-dimensional (2D) viscous vortex
patch interaction with the wall. We used the vortex particle method that is well suited for
problems where evolution of vorticity is important. The eruption phenomenon is linked to
the process known as separation of the boundary layer, which has already been described by
Prandtl (1905). Separation is a notion used to describe both steady and unsteady flows, and
that is why its meaning is not clear. In a steady flow the body surface is also a streamline. The
velocity of the fluid on the wall equals zero, but it has a nonzero value at an arbitrarily small
distance from the wall.

The process of separation takes place when two fluid particles with opposite velocity
vectors meet at one point on the wall (figure 1). As described by Prandtl, such a situation
occurs when a positive pressure gradient appears near the wall driving the flow in the direction
opposite to the mainstream.

The point where meeting fluid particles begin to depart from the plane wall is called
the separation point. If we denote velocity components along the wall by u, and those
perpendicular to it by v, then at the separation point the shear stress equals zero:

∂u

∂y
= 0, at y = 0. (1)

The condition above is important for steady flows with low Reynolds number. It was
demonstrated for the first time by Prandtl (Prandtl 1905, Schlichting 1979). When analysing
the motion using Prandtl’s steady boundary-layer equations, it can be demonstrated that
condition (1) leads to the appearance of a singularity, which means that the normal velocity
component v at the separation point approaches infinity (Landau and Lifszyc 1994). The
appearance of the singularity indicates that the fluid in the boundary layer will penetrate the
flow domain much farther than is found from the boundary-layer thickness estimation. Prandtl
described this phenomenon in the following way (Telionis 1981): ‘a fluid sheet projects itself
into the free flow and affects a complete alteration of the motion’.
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Figure 2. The streamline pattern at the point of separation S caused by a downstream moving wall
(left) and an upstream moving wall (right) with velocity uw. The separation point is established
within the flow (MRS condition).

Figure 3. Velocity profiles over the moving wall corresponding to the streamlines from the
left panel of figure 2. At the point A, τs = 0, but there is no separation point. The separation
point S appears within the flow and fulfils condition (2). The dashed line represents the
streamlines (Telionis 1981).

Moore, Rott and Sears (MRS) (Rott 1956, Sears 1956, Telionis 1981) quoted arguments
indicating that condition (1) is insufficient for unsteady flows. According to MRS, the actual
transfer of fluid particles from the wall region takes place when the stagnation point and the
point of zero stress are located within the flow as shown in figures 2 and 3:

∂u

∂y
= 0, and u = 0. (2)

Figure 2 shows the schematics of streamlines in the vicinity of the separation point S
when the wall moves with velocity uw with the mainstream or against it. In such a case, it is
said that the separation point satisfies the MRS condition. For the streamlines, it is a saddle
point. Figure 3 shows velocity profiles corresponding to the streamlines in figure 2 (Telionis
1981).

3
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Figure 4. Streamline pattern caused by the point vortex. One can note the recirculation zone with
the two stagnation points A and B. The graph beneath shows distribution of the pressure p(x)− p0
(where p0 is the pressure at infinity) and the velocity u(x) along the wall (Smith and Walker 1996).

The canonical problem leading to the abrupt eruption of the boundary layer is the
interaction of a point vortex with the viscous boundary layer (Doligalski and Walker 1984,
Doligalski et al 1994, Smith and Walker 1996, Walker 1978). In these works, the point vortex
was moving in a uniform flow in the vicinity of the plain wall. The vortex was inducing, on
its right side, motion toward the wall and, on its left side, motion away from the wall. This
caused a recirculation zone with the two stagnation points A and B (adverse flow) close to the
wall to appear (figure 4). It could be observed that the maximum negative value of the velocity
and the absolute minimum in pressure were both directly under the centre of the vortex. On
the left of this point, the mainstream velocity was increasing monotonically to zero at the
stagnation point. The pressure was increasing with velocity; so to the left of the vortex, an
adverse pressure gradient was established.

In the present paper, the point vortex was replaced by a small area of concentrated
vorticity (a thick vortex core). The research presented here will be dealing with the interactions
of a 2D vortex patch with the wall for different values of fluid viscosity (Reynolds number).
The 2D equation of the viscous fluid motion will be solved. The interaction of the 2D vortex
patch and the wall can be considered as a simplified model of the interaction between the 3D
vortex and the wall. In such a case, the vortex patch can be understood as a cross section of
the 3D streamwise vortex (figure 5) (Jimenez and Moin 1991, Panton 2001, Robinson 1991).

In a previous paper (Kudela and Malecha 2007), we showed the eruption of the boundary-
layer phenomenon provoked by the vortex patch but only for one value of the viscosity. The
viscosity was simulated by the random walk method. In the present paper, we have applied
the particle strength exchange (PSE) method to model viscosity and significantly improved
the computational procedure.
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Figure 5. Schematics of a streamwise vortex. The cross section of the streamwise vortex with the
(x, y) plane can be considered as a vortex patch.

2. The equations of motion

The equations of 2D motion of the viscous, incompressible and constant density fluid are as
follows:

∂u

∂t
+ (u · ∇)u= −

1

ρ
∇ p + ν1u, (3)

∂u

∂x
+
∂v

∂y
= 0, (4)

where u = (u, v) is the velocity vector, ρ is the density of the fluid, ν is the kinematic viscosity
coefficient, p is the pressure and 1=

∂2

∂x2 + ∂2

∂y2 is the Laplace operator.
Equations (3) and (4) must be complemented by the initial and boundary conditions,

which in this case are

u= 0, for (x, y) ∈ ∂�, (5)

u(x, 0)= u0(x, y), (6)

where ∂� means the rigid wall and u0(x, y) is the initial velocity distribution. In this case,
the initial velocity is the velocity field of the isolated vortex patch. Equation (4) expresses the
incompressibility of the flow and guarantees the existence of the stream function ψ , which is
related to the velocity field in the following way: u = ψy and v = −ψx .

In 2D space, the vorticity vector rot(u)= kω = ∂xv− ∂yu has only one nonzero
component perpendicular to the plane of motion (k is a unit vector, perpendicular to the
plane of motion). Acting with the rotation operator rot(·) on both sides of expression (3),
this equation can be transformed into the Helmholtz equation describing the evolution of the
vorticity field in time:

ωt + uωx + vωy = ν1ω, (7)

1ψ = −ω; u = ψy, v = −ψx . (8)

5
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Vector equation (3) has been replaced with scalar equation (7) for ω(x, y, t). It is worth noting
that in equation (7) there is no pressure term.

In vortex methods, the viscosity decomposition algorithm is commonly used (Cottet and
Koumoutsakos 2000). This means that equation (7) is solved in two steps: first the inviscid
equation:

ωt + uωx + vωy = 0 (9)

and then the viscous diffusion equation (the Stokes problem):

ωt = ν1ω. (10)

In this paper, equations (9) and (10) were solved by the vortex particle method.

3. Description of the vortex particle method

From equation (9), it can be deduced that the vorticity is constant along the trajectories of
the fluid material particles (dω/dt = 0). So ω(x(t,α), t)= ω(α, 0), where x(t, α) denotes
the position at time t of the particle, which at the initial instant t = 0 was in the position
α. According to the third Helmholtz theorem (Wu et al 2006), vorticity lines move with the
(ideal) fluid. This means that the movement of vortex particles can be described by the infinite
set of ordinary differential equations:

dx p

dt
= u(xp, t), x(0,α)= α, (11)

where α = (α1, α2) means the Lagrange coordinates of fluid particles.
By solving the Poisson equation for the stream function (8) and differentiating, the

velocity field can be presented as dependent on the vorticity distribution:

u(x)=

∫
K(x − x′)ω(x,′ t) dx′, (12)

where

K(x)=
1

2π |x|
(−y, x), and |x|=

√
x2 + y2.

Equation (12) is a fundamental formula for direct vorticity methods (Chorin 1973). The
velocity field can also be determined by solving the Poisson equation for the stream function
(8) on the numerical mesh by a finite difference method. Subsequently, the velocity from
the mesh nodes is interpolated onto the particle’s positions. Such an approach significantly
accelerates the calculations, and for this reason it was used in this work (Cottet and
Koumoutsakos 2000).

For the sake of numerical calculations, it was necessary to replace the infinite set of
differential ordinary equations (11) with the finite set. In order to achieve it, the space of
Lagrange variables is covered by a regular mesh ( j11x, j21y), ( j1, j2 = 1, . . . , N ), 1x =

1y = h. The mesh is also used to solve the Poisson equation for the stream function. In the
present method, the initial vorticity field is replaced by a distribution of vortex particles. To
each particle circulation is assigned

0p(x p)=

∫
Ap

ω (x, y) dA ≈ h2ω̄, (13)

6
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where Ap = h2 denotes the cell area with index p = ( j1, j2), whereas ω̄ is the mean vorticity
value for the cell. Vorticity is approximated by the sum of Dirac discrete measures

ω(x)≈

N∑
i=1

0δ(x − x p), (14)

where N is the number of particles and δ denotes the Dirac function. Circulations of particles
change with time as a result of diffusion. The solution of equation (9) in the time interval
(tn, tn+1) is obtained by solving a set of differential equations:

dx p

dt
= u(xn

p(t), t), x p(tn)= xn
p, tn 6 t 6 tn+1, p = 1, . . . , N (15)

and new positions of the particles are approximate solutions of equation (9) for the time
t = tn+1:

ωn+1(x)=

N∑
p=1

0pδ(x − xn+1
p ), xn+1

p = x p(tn+1). (16)

To solve the diffusion equation (10), the PSE method was used. The main idea of the PSE
method is to replace the differential Laplace operator by the integral operator 1ε (Cottet and
Koumoutsakos 2000):

1ε(x)∼
=

1

ε2

∫
(ω( y)−ω(x))ηε( y − x) d y. (17)

The function ηε = ε−2(x/ε), (ε > 0), is a symmetric cut-off function satisfying specific
conditions for its moments. For the PSE method to be effective, the relation ε/h > 1, where
h is the cell size, must be satisfied, i.e. the supports of adjacent particles must overlap. In
practice, this means that each particle should be able to communicate with a certain number
of adjacent particles. Using (17) the change of the particle intensity due to viscosity can be
expressed as:

d0p

dt
= νε−2

∑
q

(
0q −0p

)
η

(
x p − xq

ε

)
. (18)

The function η(x) can have infinite support; however, such a function has a major
disadvantage: it requires calculating the interaction of each vortex particle with all other
particles in the flow domain. It means that computational effort is proportional to O(N 2),
where N denotes the number of vortex particles in the flow. Quadratic complexity significantly
slows down the calculation process. A solution of this problem is to apply the function η(x)
with finite support. In this paper, a second-order function with finite support was chosen:

η(x)=


C

1 + |x |2
for |x |6 2,

0, for |x |> 2,
(19)

where C = 0.835 was calculated to satisfy the condition for the second moment, which
should be equal to 2(

∫
x2η(x) dx = 2) (Cottet and Koumoutsakos 2000). In the case of a

function with finite support, computational effort is proportional to O(m N ), where m means
the number of particles within the support of the cut-off function. Because m � N and m is
constant, the computational effort is linear (proportional to O(N )). In the algorithm developed
for this work, the kernel (support) of the function (19) covered exactly nine neighbouring
vortex particles (m = 9).

7
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Figure 6. Remeshing of vortex particles close to the wall.

Vortex particle methods belong to the class of self-adaptive methods. Vortex particles
tend to gather in the regions of high velocity gradients. Particles grouping in some regions
is an undesirable phenomenon. It worsens the precision of the viscous effect modelling
(solution to the diffusion equation) and it could create phantom vortex structures, which
could significantly alter the velocity field. To avoid these problems it is necessary to apply an
additional procedure to obtain a uniform distribution of vortex particles in the flow domain.
The process is called remeshing. When vortex particles are uniformly distributed, the cut-off
function (19) always covers exactly the same number of particles. This can be achieved when
remeshing is performed in each time step. In this work, such an approach was adopted. After
the advection step vortices were distributed on a regular grid coinciding with the numerical
mesh used to solve the Poisson equation (8). Reorganization of the particles’ location and
circulation was controlled by the second-order interpolation kernel:

ϕ(x)=


1 − x2, 06 x < 1

2 ,

(1 − x)(2 − x)/2, 1
2 6 x < 3

2 ,

0, x > 3
2 .

(20)

To avoid problems with vorticity ‘running out’ beyond the boundaries of the calculation
domain, the kernel (20) was modified for particles closer to the wall than 1

2 h (Koumoutsakos
1993) (figure 6):

ϕ(x)=



1 −
3
2 x + 1

2 x2, for nodes 1, 2, 3,

x(2 − x), for nodes 4, 5, 6,

x(x − 1), for nodes 7, 8, 9,

0, for all other nodes.

(21)
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The 2D interpolation kernel is a product of 1D kernels: ϕ∗(x, y)= ϕ(x)ϕ(y). Finally, the
interpolation proceeds as follows:

0∗

i (x
∗

i , y∗

i )≈

N∑
j=1

0 j (x j , y j )ϕ(x
∗

i − x j )ϕ(y
∗

i − y j ), (22)

where 0∗ denotes new circulation of the vortex particle in its new position (x∗

i , y∗

i ).
Because remeshing was performed in each time step, the individual procedure for

the redistribution of particles’ circulations onto the mesh nodes was unnecessary. It made
the whole process of the calculations faster. The differential equation (15) was solved by the
second-order Euler-improved method. The velocity of the particles between the grid nodes
was calculated using the interpolation formula:

u(x p)=

∑
j

u j lh(x p − x j ), (23)

where lh is a basic bilinear Lagrange function.

4. Realization of the no-slip condition

Condition (5) for the viscous fluid motion equation implies no slip between the fluid and the
wall. Both normal and tangent components of the velocity field should vanish. Describing
the fluid motion using vorticity and the stream function simplified the equations of motion,
but complicated the realization of the boundary condition (5). In numerical practice of the
vortex methods, realization of the condition (5) is achieved by generating the appropriate
amount of vorticity on the rigid wall. The wall is treated as a vorticity layer with intensity
γ (s, t)= [uω], where uω means velocity induced on the wall by the vorticity located inside the
flow domain and a square bracket denotes a jump in the velocity value from zero to uω. Here,
our task is to eliminate the undesirable vorticity layer. The intensity of the vorticity layer can
be described by an integral equation that encompasses the entire wall (the global approach).
However, this problem can also be treated locally. In this work, Lighthill’s approach was
adopted (Lighthill 1963). The idea is to satisfy the no-slip condition by assigning a specific
value of the vorticity flux ν(∂ω/∂n). To understand how the vorticity flux can compensate
for the undesirable tangent component of the velocity field the equation of the viscous fluid
motion on the wall has to be written in the form

du
dt

≈
u(t +1t)− u(t)

1t
= −

∂p

∂s
− ν

∂ω

∂n
, (24)

where the variable y is in the direction orthogonal to the wall. One can notice that acceleration
is related to the pressure gradient as well as to the vorticity flux. If the tangent velocity
component appears on the wall, it can be interpreted as additional acceleration generated
in a short interval 1t . This acceleration can be compensated for the additional vorticity
flux ν(∂ω/∂n). Therefore, we can assume that in the time interval 1t , the tangent velocity
component is annihilated by us = ν1t∂yω. Hence, the derivative of vorticity in the direction
perpendicular to the wall is

∂ω

∂y
= −

γ

ν1t
, (25)

where γ is the intensity of the vorticity layer along the wall. To introduce a new vorticity,
generated by the vorticity flux, into the flow domain, an additional initial-boundary value

9
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Figure 7. Computational domain of the problem.

problem for the diffusion equation must be solved (Koumoutsakon et al 1994):

ωt = ν1ω,

ω(x, y, t = 0)= 0,

∂ω

∂y
= −

γ

ν1t
.

(26)

It should be noted that the initial condition for problem (26) is equal to zero. It was
solved on the numerical mesh by a finite difference method. Vorticity obtained by solving
equation (26) is added to the vorticity already existing in the fluid and converted to particles.

5. Numerical calculations

Figure 7 shows the schematics of the computation domain together with a vortex patch, d is the
distance between the vortex centre and the wall and r is the vortex radius. The Navier–Stokes
equation (3) was transformed into non-dimensional form by introducing as a characteristic
length L̄ = d, velocity Ū = 0/2πr and time T̄ = L̄/Ū . Using non-dimensional variables
x′

= x/L̄ , t ′
= t/T̄ , u′

= u/Ū , equation (8) takes the form

ωt + uωx + vωy = (1/Re)1ω, (27)

where Re =
Ū L̄
ν

=
0

2πν ·
d
r is the Reynolds number and 0 = ω0πr2, where ω0 is the initial

vorticity of the patch.
The size of the computational domain was chosen by trial and error to minimize the

influence of the boundary condition on the numerical results. Finally, for the computational
domain was chosen L = 8 and H = 7 in non-dimensional units. In order to solve the Poisson
equation for the stream function, the boundary conditions were as follows: in the direction x ,
a periodic boundary condition was used, whereas for the bottom (y = 0) and upper (y = L)
boundaries,ψ = 0 was used. The initial position of the vortex patch was x0 = 7.5, y0 = d = 1,
its initial radius was r = 0.3 and its vorticity was ω0 = −1.25. The mesh size and the time step
were 1x =1y = 0.01 and 1t = 0.01, respectively.

One time step from tn to tn +1t proceeded as follows:

1. Redistributing particles’ circulations onto the mesh nodes (20) and (21).
2. Solving the Poisson equation for the stream function:

1ψ = −ω,

ψ |x=0 = ψ |x=L , ψ |y=0 = ψ |y=H = 0.

10
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3. Calculating the velocity on the numerical mesh:

ui, j =
ψ(xi , y j +1y)−ψ(xi , y j −1y)

21y
,

vi, j = −
ψ(xi +1x, y j )−ψ(xi −1x, y j )

21x
.

4. Determining the vorticity layer γ = us and the solution of the diffusion equation (26).
5. Displacing vortex particles according to (15).
6. Remeshing vortex particles onto a regular grid (formulae (20) and (21)).
7. Changing the circulations of particles as the result of diffusion by using the PSE method

(18).

To solve the stream function equation (8), a fast elliptic equation solver was used. The same
program was also adopted to solve the diffusion equation (26). For this purpose, the time
derivative was replaced by the difference quotient: ωt |t=tn+1 ≈ (ωn+1/1t), (ωn

= 0), which
resulted in the elliptic equation:

1ωn+1
−
ωn+1

ν1t
= 0,

∂ω

∂y
|y=0 = −

us

ν1t
, ω|x=0 = ω|x=L , ω|y=H = 0.

(28)

6. Numerical results

A vortex patch, because of the presence of the wall, moves along it from right to left. The
direction of the movement is determined by the sign of vorticity of the patch. The maximum
velocity induced by the patch is directly below it, so the pressure in this place has a minimal
value. Away from the discussed vortex structure, in the direction of motion, the velocity
decreases, while the pressure increases. This means that the pressure gradient is opposite to
the horizontal movement of the patch. Such a pressure gradient slows down the fluid motion
so that separation points and recirculation zones may appear near the wall. A recirculation
zone may precede the occurrence of an unsteady separation event. The emerging boundary
recirculation zone resembles a bubble growing bigger in the direction perpendicular to the
wall, eventually leading to eruption of the boundary layer.

In figure 8(a), the pattern of streamlines just before the eruption is presented. The figure
was obtained by analytic studies of Prandtl’s boundary layer equations (Cowley et al 1990,
Doligalski et al 1994, Smith and Walker 1996). Zone I presents the viscous boundary layer.
In zone II, the flow direction is opposite to the mainstream direction and is treated as
irrotational (Cowley et al 1990). This zone separates two zones, I and III, and controls the
eruption (Peridier et al 1991a, 1991b). In figure 8(b), we present the streamlines and the
direction of flow near the region of boundary layer separation obtained in our computations.
In the background of the streamlines, the vorticity field is marked. The dark (light) colour
represents positive (negative) vorticity. The recirculation zone with two stagnation points,
marked A and B, is clearly visible. It should be noted that the initial vortex patch that induced
the recirculation zone is not visible in figure 8(b) because it is located above. Point A is an
attachment point. At the point B, fluid particles with opposite velocity vectors meet and they
depart from the wall. This point is a separation point (shear stress on the wall disappears,
∂u/∂y = 0), but here eruption of the boundary layer does not take place. According to the

11
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Figure 8. (a) The recirculation zone preceding the eruption of the boundary layer according to Van
Dommelen and Cowley (1990). (b) The streamlines, the directions of the flow and the vorticity
field (greyscale) obtained in the present numerical studies. The vortex patch that induced the
recirculation zone is not visible but is located above and has opposite circulation.

Figure 9. Interaction of the vortex patch and the wall, Re = 500. There is a lack of recirculation
zone. The figure shows the vorticity field with selected streamlines.

MRS condition (see figure 2), unsteady separation takes place when the separation point
appears inside the flow. The generation of the recirculation zones does not imply the eruption
event. We find that the process of eruption depends on fluid viscosity and on the intensity of
the vortex patch. Comparing figure 8(a) with figure 8(b) we note that the recirculation zone
in figure 8(b), which qualitatively corresponds to zone 2 on the left, is rotational—the fluid
inside it circulates.

The influence of viscosity on the process of eruption is governed by the Reynolds
number. With the Reynolds number increasing (and viscosity decreasing) the flow becomes
increasingly more complicated.

In figure 9, the vorticity field along with the selected streamlines induced by the vortex
patch for Reynolds number Re = 500 is presented. In this case, the recirculation zone near
the wall has not formed, and consequently there is no separation point. It should be noted
that, due to the viscosity of the fluid, vortex particles do not follow the trajectory of the fluid
particles.

12
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Figure 10. Interaction of the vortex patch and the wall, Re = 1000. A recirculation zone is visible
for t = 10 (see the arrow). Further on the recirculation zone disappears. The figure presents the
vorticity field with selected streamlines.

Figure 11. Interaction of the vortex patch and the wall, Re = 4000. There is a stretching of the
recirculation zone for t = 10 (see the arrow), but eruption does not take place. The figure shows
the vorticity field with selected streamlines.

Increasing the Reynolds number to the value Re = 1000, figure 10, results in the
appearance of the recirculation zone in the boundary layer but the zone does not develop
further because of the high value of the viscosity.

Figure 11 shows the results for Re = 4000. Comparing figure 11 with figure 10, we can
observe that the emerging recirculation zone is getting intensely stretched in the direction
normal to the wall (image t = 10). However, the eruption of the boundary layer does not
take place yet. The vorticity departing from the wall causes only streamline distortion. The
situation changes with the increase of the Reynolds number. For Re = 5000 (figure 12), a new
phenomenon manifests itself in the flow. It is called the eruption of fluid particles from the
boundary layer.

In this case, similarly to the one before, the recirculation zone is intensely stretched in the
direction normal to the wall. Splitting of the recirculation zone takes place. Streamlines form a
‘figure of 8’ shape. Inside the boundary layer, a saddle point is generated (figure 12, t = 11.25,
and figure 13) that is also a separation point. The process results in the eruption phenomenon,
which manifests itself as the ejection of a portion of the fluid from the boundary layer to the

13



Fluid Dyn. Res. 41 (2009) 055502 H Kudela and Z M Malecha

Figure 12. Interaction of the vortex patch and the wall, Re = 5000. The eruption phenomenon is
visible for t = 15. The eruption manifests itself as an ejection of fluid elements from the boundary
layer to the outer flow. These fluid elements are enclosed in the new vortex structure (closed
streamlines, see the arrow).

outer flow. This portion is enclosed in the new vortex structure (closed streamlines) (figure 12,
t = 15). This means that the separation of the vortex takes place.

Magnified images of the separation phenomenon are shown in figure 13. Attachment
points are marked with letter A, separation points with B and the saddle point with S.

In course of time, the recirculation moves along the wall (from right to left) and is
stretched slightly (see the t = 10 frame). Simultaneously, it is pulled firmly in the normal
direction away from the wall. This results in the split of the recirculation zone into two vortex
structures. The streamlines close up into a characteristic figure-of-eight shape with saddle
point S (see the t = 12.8 frame). The appearance of the saddle point results in the split of the
primary boundary recirculation zone into two independent vortex structures. One of them is
lifted upwards and the other remains near the wall, forming a secondary recirculation zone. In
course of time, the remaining recirculation zone is dispersed under the influence of viscosity
(the t = 15 frame). The detachment process of the new vortex is rapid. Fluid particles from
the vicinity of the wall are trapped inside the departed vortex.

Figure 14 presents the phenomenon of eruption of the boundary layer for Re = 10 000. In
this case, the generated vortex structure on the wall has a high intensity and does not disperse
but is going around the primary vortex patch. In figure 14, one can observe the creation of
another recirculation zone and eruption (the t = 28 and t = 56 frames).
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Figure 13. The beginning of the eruption process. One can notice the process of the saddle
point S creation and tearing apart of the recirculation zone. The Reynolds number is as in
figure 14 (Re = 10 000).

Raising the Reynolds number results in increasingly more complex flow. Figure 15
presents the results for Re = 50 000. Not only one vortex structure but also a whole sequence
of vortex structures detach from the wall (figure 15, frame t = 84). For such high values of the
Reynolds number, separation of the boundary layer induces highly complex flow near the wall
and sheds light on how eruption can influence near-wall turbulence by generating a sequence
of vortex structures.

In order to better illustrate the eruption of fluid particles from the wall layer into the
main flow, the following numerical experiment was carried out. Along the wall, some passive
particles (markers) were placed. Their movement illustrated the evolution of the fluid particles
from the wall layer. Markers were placed in four rows. The distance between the rows in the
direction normal from the wall was 0.51y. So the last row of markers was placed at the height
21y = 0.02 from the wall.

Figure 16 presents the evolution of the fluid particles (markers) from the wall layer for
Re = 500 (compare figure 8). The picture shows that eruption does not take place and that
fluid particles remain near the wall. Only the markers from the highest row are moved away
slightly by the velocity field induced by the vorticity of the primary vortex patch, but they do
not travel far from the wall.

Figure 17 presents the motion of the fluid particles from the wall layer for Re = 10 000
(compare figure 14). In this figure, the eruption phenomenon can be clearly seen. The fluid
particles from the boundary layer, enclosed in the vortex structure, are rapidly ejected into the
flow (the t = 11 and t = 23 frames). The first detached vortex is followed by another one (the
t = 37 frame). The experiment clearly shows that the eruption phenomenon is responsible for
transport of fluid particles and vorticity from the wall into the flow.

15



Fluid Dyn. Res. 41 (2009) 055502 H Kudela and Z M Malecha

Figure 14. The eruption phenomenon, Re = 10 000. One can observe the creation of another
recirculation zone (t = 28, t = 56) (see the arrows).

Figure 15. The eruption phenomenon, Re = 50 000. Multiple processes of eruption. On can see
the sequence of generated vortices t = 85 (see the arrow).
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Figure 16. Evolution of the fluid particles from the wall layer, Re = 500. Eruption does not occur.
The figure shows the motion of passive particles (markers).

Figure 17. Evolution of the fluid particles from the wall layer, Re = 10 000. The eruption
phenomenon is clearly visible. The figure shows the movement of passive particles (markers).

7. Conclusions

Our numerical results show that the appearance of the recirculation zone (vortex bubble) in
the wall layer precedes eruption events. However, such appearance does not always lead
to eruption. The eruption process takes place for a sufficiently high Reynolds number (low
viscosity). Ejection of the fluid particles from the region close to the wall is preceded by the
appearance of a saddle point inside the wall layer. For a sufficiently high Reynolds number the
interaction of the vortex patch with the wall may lead to a very complex flow. There appears
a cascade of vortices that detach from the wall and move around the primary vortex patch,
evoking the sequence of secondary eruption events. One can thus speak about the regenerative
nature of the eruption phenomena. It enhances mixing and promotes convective motions.
Therefore, better conditions for heat exchange can be achieved by intensifying eruption in
the boundary layer. On the other hand, eruptions cause perturbations of the pressure field and
may result in noise and other disturbances. The increase of the momentum exchange leads
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to the increase of the drag force. In order to reduce the disturbances of the drag force, it is
necessary to control and prevent sudden eruptions of the boundary layer.

We have tested thoroughly the method that we used in this work by applying it to a variety
of simple test problems: the Poiseuille flow, the second Stokes problem, cavity, backward step
flow and vortex dipole interaction with the wall. The obtained results have been published
in Kudela and Malecha (2008). It was shown that the rate of convergence of the method
was ∼1.5. The obtained results were in good agreement with experimental data and other
numerical methods. The vortex-in-cell method can be extended to 3D problems (Cottet and
Poncet 2003, Ould-Salhi et al 2000). Our next step is to investigate the eruption phenomenon
for 3D flows.
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