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Abstract: The " negative temperature" effect for the point vortex systent in tl.te square box
with a solid boundary was investigated. onsager's hypothesis thąt ąt a high energy state the
vortices with the same sign with cluster was verified. During the merger process of the
coherent vortex slructures, fiIamentation of the vorticity field was observed. For the
calcttląlion, the "yortex-in-cell" nlethod was used. For the visualisation of the JIow and
dynanic of the vorticity field, vortex particles were used.

1. INTRODUCTION

The appearance of coherent structures is one of the most striking features of two-
dimensional turbulence. In 1949 Onsager in his famous paper [14] was the first who
tried to explain of the formation of that large-scale vortex structure by statistical
theory. One can assume that a large number of suitably chosen point vortices can
approximate the motion of the Euler equation of fluid motion [3]. But the motion of
a such point vortex system can also be described by the Hamiltonian system. The
complete motion is specified by the individual location (xn,)n) of the particles.
Therefore, the phase space of this system is simply the configuration space itself.
When the motion moves into the finite space, then the phase space is also finite. Since
the phase space is bounded, the number of accessible steps per unit energy cannot
increase indefinitely. That is, at some point while energy is being increased, the rate of
change of the entropy becomes negative. With the definition of temperature being the
inverse of the rate of change entropy versus energy, we have a "negative temperature
state" beyond a threshold value of energy. As a result the vortices of the same sign
will tend to cluster t141.

The main goal of the present paper was to
systems for different "energies". Besides

study the behaviour of the point vortex
the limit set of vortices, we are also
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interested in transition processes. It is known that the interactions between the
vortices lead to vortex mergers and pairings. Those processes produce intense
filaments of vorticity [5]. For numerical simulation we used the vortex-in-cell method.
This method, opposite to the direct integration method, permits us to introduce into the
calculation a relatively large number of vortex particles (40000). The patches, which
are created by a large number of vortex particles can be regarded as continuous and
incompressible. To some extent we have insight into the behaviour of the continuous
field of two-dimensional vorticity.

In spite of the fact that all real flows are three-dimensional ones, it is thought that
research capabilities of vortex evolution in two-dimensional space could help to
understand the nature of vorticity in three dimensions.

2. THE EQUATIONS OF MOTION
The Euler equations of motion in Cartesian coordinates (x,.y) for inviscid flow in
domain D limited by boundary 0D, rewritten in terms of vorticity and stream function,
have the structure [1]:

Eo / \;-*V'(uo) = 0
0t

av - -.
vluo = o

,,(r,y)- +,r(*,y)=+dy dx
where crl is the non-Zero component of vorticity ĄO,O,crl)=Vxu
function. Equations (1) indicate that the vorticity field moves
the evolution of vortex particles is expressed by equations:

dvi _ .. _rgy)
d; 

_ Lti _l.6,l,
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ctr(x)
i=l

(1)

, V is the stream
with the flow; so

dvi [av)
d, - vi -- lE-j,

(2)

(3)

The continued vorticity field is approximated by discreet distribution of the Dirac
delta function ( point vortices) :

Ę =J adxcly
A;

vrhere f; is the intensity of a single vortex, Ai is the elementary area of the grid cell. In
this way the evolution of vorticity is described by a system of N ordinary differential
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cquertions. In tyo climensional space the vorticity fielcl is replaced by a system of

póint vortices. This systeln of N-pointed vortices can be clescribed by thc

Hamiltoni an equations :

AH

a"
arr

0r,

rvhere dH/dr =0. H is the Kirchoff-Routh function [8]:

dx.f'' clt

dv.
f -'l
' clt
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(4)

E

Iaro;ar = Ior,dy,...dx 
dy* ,

H<E

I{=
N

ln ru + )rG,, )r ),
i=l

,,,' =(x, _ x,)Ż + (l, _ l )' (5)
2n

The first term in the above formula is interpreted as a function of interaction betrveen

vortices, and we namecl it Ho; the other term is a harmonic function related to the

presence of the solicl bounclary. When flow goes in unlimited 2D space then y = Q.

|n this paper the system of vortices "energetically" is characterized by Ho. Taking into

u..ount the fact that systern (4) is Hamiltonian and describes the motion of a large

number of the particles , it seems suitable to analyse the behaviour of vortex particles

in terms of statistical physics. The purpose of this paper is to verify Onsager's

hypothesis, which is connected with the "negative temperature" phenomenon.

3. O'NEGATIVE TEMPERATURE'' EFFECT

Accorcling to equation (4) the x ancl y coordinates of each vortex are canonical

conjugatei, so that the phase-space is identical with the configuration-space of the

vortices tll. It is assumed that the motion of each particle is ergodic. It means that all
points of the surface of constant H in the phase-space are available with the same

probability. lf domain D is limited, then the phase-space is also limited. The volume

of phase-space when E<H, entropy and temperature are defined:

S _ log Q(E), 7 _ (dS l dE)Ą = ś)lŚ)' (6)

where O(E) is the state density function and the prime index mean differentiation.

If the system of vortices is energetically characterized by function Ho lfirst term in

formula (5)l then it is possible to obtain large values of energy Ho by introduction of
the order in the initial positions of the vortex particles. For example, particles of the

same sign of intensity can be put close together. Onsager's hypothesis suggests that

there exists the value En and when the system obtains E ) E^, then we have dS/dE < 0-

So one can say that the system is in a "negative temperature" state. According to the

hypothesis, the most likely state for a srnall value of energy H appears when vortices
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of the opposite sign are
"negative", vortices of the
by numerical simulation.
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mixed. For large values of energy, when temperature is
same sign tend to cluster. We tried to verify this hypothesis

4. ALGORITHM OF "VORTEX.IN-CELL'' MBTHOD

The stream function was obtained by solving Poisson's equation using a fast direct
solver of the 4-th order (DFPS2H from IMSL library). All calculations were carried

out in double precision. Calculations using the "vortex-in-cel1" method were as

follows 16,ll:

1) According to formula (3) in the time step /n = nA/ the intensity of each particle is

redistributed onto nodes of the grid, and their vorticity rrl(xi) is calculated:

Ę : > l, Qi@,)), J , =Żh2cp,(x"r), ., _+
p p Ji

where Qi(x)= rĄ(x-xi)th) is m-orderB-spline [16]. Form= l (cg@) _ 1- [r| for|-ł| <

1, and for |xl > I ę,(x) = 0 ); interpolation (7) colTesponds to the area-weighted

interpolation scheme. In the present paper for cells bordering the boundary of the

domain, the first order B-spline were used. However, inside the domain the third order

B-spline (m=3) was applied:

(1)

j,r,'*1, l"l=t

lĄ>z

Ż,J,|',l'Ś) ł'|r@)l'

q(x)=]_*tł' + x2 -zlĄ*!, t<|x|<z (8)

0,

It is important that the third order B-spline has twice as large as the first order one.

This support for the interpolation function includes 16 nodes of the grid. B-splines are

even functions and satisfy the normalisation condition: lrp(rp, - 1 . The scheme

described above is conservative and stable [6]:

Ż,' ,', -' o|,'
(e)

2) After redistribution of the vorticity, Poisson's equation is solved:

av=-.o

lr, =o

The velocity at the grid nodes is calculated by the central difference:

( 10)
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Y(x;,,! i, łh) -Y(xr,, };, - h)

(11)

813

(lŻ)

uj=

vj=-

2h
Y(r;, + h, 1l;, ) - Y(x;, -h, I i,)

2h

3) The velocity from the grid nodes is interpolated into the vortex particles:

u" (x ,(x r),)=lu]t
j

where /r(x) is the base function of the lagrangian interpolation. We used the second
order interpolation irnplementecl in the DQD2DR procedure of the IMSL library.
A new vortex position in (n +1) time step is obtained when solving equations (Ż) bv
the fourth order Runge-Kutta method. It makes up one computational time step.

5. NUMBRICAL RESULTS
We assumed that vortices were enclosed in square domain D lx1. The time step was
A/ = 0.0005 and the grid size was Ax=Ay = 0.01. At first we studied the evolution of
the vortex point system for low energy. We took an approach similar to the work of
Montgomery & Joyce Ul, lŻ,4]. We redistributed the vortex particles with the
intensityĘ = ł l/20000( i= 1'2)randomlyoverthedomain. Itgavethe interaction
energy Ho = -l0-5. As we can see in Fig.l, distńbution of the vortex point is nearly
stationary. The particles moved along the stream lines, and the stream function after
5000 steps (At=0.0005) looks very similar as in t = 0.

Due to the fact that interaction energy Ho is proportional to lnfri-x;1, and in order to
obtain the higher value of He , we gathered the vortex particles at sixteen square
boxes with side a length equal to 19*dx (dx _ 0.01). To the boxes we attached thę
constant vorticity oo=110. The sign of the vorticity attached to the boxes was changed
alternately. Squares with the same sign of intensity are separated by squares the
opposite sign. The global vonicity in the domain was zero. The vorticity inside the
box was approximated by the random redistńbution of 2500 point vortices. The
number of vortex particles that took part in the computation was 16x25000=40000.
The Ho was equal to 4.330. The intensity of one vortex point was lĘl = 0.001. By
introducing order in the position of the particles, we decreased the entropy of the
system. The low entropy and the high interaction energy caused the system to be far
from equilibrium.

Fig.3A shows the sequence of the vortex particle distribution. We noticed that the
vortex mergers and pairings, i.e. the formation of the dipolar structure, were made up
of opposite-signed vortices. And one of the striking features of the picture sequence is
the production of a thread-like structure that is called the filaments of vorticity. The
filaments of vorticity are a characteristic feature of fully developed two-dimensional
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turbulent flow [5, l0]. The appearance of the filaments increases the tendency to
reduce the interaction energy. To balance this tendency the vortex coherent structure
must approach each other [1]. So one can say that filamentation is associated with
voftex mergers [5]. It is worth noticing that the vorticity filaments are persistent and
stable. Probably they are stabilized by large-scale vortex structures [5]. In the frame
t = 15 of Fig.3A one can see that the vortex particles are segregated, thus being in
agreement with Onsager's hypothesis. The final stage resembles the dipolar structure
(the structure made up of opposite-sign coherent vortices rvhich are separated by
vorticity filaments (see also Fig.Z, which shows cornpatibility of the vorticity
distribution with the stream function in perspective 3D view). Fig.3B shows the
exemplary distribution of stream function lines that correspond to vortex particle
distribution at time t=0, t = 4 and t = 15. In that picture, the separation process of the
vortex particles is clearly visible. We stopped the calculation because the monitored
value of Ho changed more then Ż57o. The variations of Ho increased rapidly in the
final steps of the calculation. We are aware that our numerical calculations introduced
into the calculation some "numerical viscosity". The dissipation is greater when
complex structures appears. We have to add that the transition process which we
presented in Fig.3A is insensible in some intervals of variations of the numbers of
particles and the size of the boxes. It depends only on the value of Hs . Smaller values
of cDg give smaller values of Ho. and causes the transition process to slow down.

6. CONCLUSIONS
The vortex method used to simulate the transition process in the distribution of the
vorticity seems to be very attractive. The vortex particles are natural tools for the
visualisation of the flow and dynamic of the vorticity fields. It seems that Onsager's
hypothesis, that at a high energy state the vortices with the same sign will cluster, is
correct. The merger process of the coherent vortex structure is accompanied by
filamentation of the vorticity field.
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Figure 1: Initial position of positive (red) and negative (green) vortices, H o : I O 5; initial

stream function and nal stream function with contour legend.
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Figure 2: A) Distribution of vorticity and its contour
function related to the vońicity distributiorr from 2A'
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