Przydatne wzory

opracował: dr inż. Przemysław Błasiak

22 maja 2017

Spis treści

Wykaz oznaczeń

1	\mathbf{Prz}	enosze	nie ciepła 5
	1.1	Przew	odzenie ciepła
		1.1.1	Ścianka płaska
		1.1.2	Ścianka cylindryczna
		1.1.3	Ścianka kulista
	1.2	Przeni	ikanie ciepła
		1.2.1	Ścianka płaska
		1.2.2	Ścianka cylindryczna
		1.2.3	Ścianka kulista
	1.3	Wymi	ana ciepła przez pręty
		1.3.1	Wzory ogólne
		1.3.2	Pręt nieskończenie długi
		1.3.3	Pręt o skończonej długości izolowany na końcu 8
		1.3.4	Pręt o skończonej długości nie izolowany na końcu 8
	1.4	Wymi	ana ciepła przez żebra
		1.4.1	Żebro proste o przekroju prostokątnym
		1.4.2	Żebro okrągłe o stałej grubości
		1.4.3	Sprawność żebra
		1.4.4	Ścianka ożebrowana
	1.5	Wymi	enniki ciepła
		1.5.1	Wzory podstawowe
		1.5.2	Parametry bezwymiarowe
		1.5.3	Przepływ krzyżowoprądowy
		1.5.4	Metoda ε -NTU
	1.6	Konwe	ekcja wymuszona - opływ ciał
		1.6.1	Opływ walca kołowego
		1.6.2	Opływ kuli
		1.6.3	Opływ cylindrów o różnym kształcie
		1.6.4	Opływ pęczka rur
	1.7	Konwe	ekcja wymuszona - przepływ w kanałach
		1.7.1	Przepływ laminarny w rurze

3

		1.7.2 Przepły	w turbulentny w rurze	 20
		1.7.3 Srednic	a ekwiwalentna	 20
		1.7.4 Przepły	vw w szczelinie pierścieniowej	 21
	1.8	Konwekcja nat	uralna	 21
	1.9	Konwekcja prz	y zmianie fazy	 22
2	Pod	stawy termoo	lynamiki	23
3	Teo	ria maszyn ci	eplnych/Termodynamika	24
	3.1	Gazy wilgotne		 24
		3.1.1 Podsta	wowe pojęcia	 24
		3.1.2 Wykres	Moliera i -X	 27
		3.1.3 Przemi	any gazu wilgotnego	 27
	3.2	Spalanie		 28
		3.2.1 Skład p	baliw gazowych	 28
		3.2.2 Skład p	paliw stałych	 29
		3.2.3 Ilość ut	leniacza przy spalaniu zupełnym i całkowitym	 29
		3.2.4 Skład s	palin przy spalaniu zupełnym i całkowitym	 30
		3.2.5 Spalani	e niezupełne i niecałkowite	 31
	3.3	Przepływy gaz	ów	 31
		3.3.1 Założer	iia, prędkość średnia, równanie ciągłości	 31
		3.3.2 Równa:	nie energii	 32
		3.3.3 Wzory	do obliczeń dysz	 33
		3.3.4 Zasada	zachowania ilości ruchu	 35
	3.4	Sprężarki		 35
	3.5	Siłownie parov	ve	 35

Wykaz oznaczeń

Oznaczenia są zgodne z [2]:

- A powierzchnia, pole przekroju, m²
- b szerokość, m
- d średnica, m
- F~- pole przekroju podłużnego, m²
- $\dot{G}~$ strumień przepływu, kg/s
- h wysokość, m
- k współczynnik przenikania ciepła, W/ (m² K)
- L długość, m
- m~– współczynnik temperaturowy dla pręta lub żebra, m $^{-1}$
- $U~-~{\rm obwód,\,m}$
- \dot{Q} strumień ciepła, W
- \dot{q} gęstość strumienia ciepła, W/m²
- \dot{q}_L jednostkowy strumień ciepła odniesiony do 1 m długości rury, W/m
- r promień, m
- R opór cieplny przegrody, (m²K)/W
- t temperatura, °C
- T~ temperatura, K
- x odcięta, odległość od ściany w temperaturze t_1 , m

Symbole greckie

α	—	współczynnik wnikania ciepła, W/ $\left(\mathrm{m^2K} ight)$
δ	_	grubość, m
ε	_	sprawność
ϑ	—	nadwyżka temperatury, K lub $^{\rm o}{\rm C}$
λ	_	współczynnik przewodzenia ciepła, W/ $\left(mK\right)$

$Indeksy \ dolne$

muchoy utine		
0	-	stan początkowy, na początku pręta
f	-	parametry płynu
h	-	parametry na powierzchni czołowej
iz	_	izolacja
k	-	parametry końcowe (na wylocie)
L	_	parametry na końcu pręta
0	_	ożebrowanie
ot	_	parametry otocznia
<i>02</i>	_	ożebrowany
p	_	parametry początkowe (na włocie)
pz	_	powierzchnia żebra
sr	_	średni
w	_	parametry ścianki
mz	_	parametry na powierzchni między żebrami
z	_	żebro, parametry na powierzchni zewnętrznej
zp	_	żebro proste
zo	_	żebro okrągłe

Rozdział 1

Przenoszenie ciepła

1.1 Przewodzenie ciepła

Prawo Fouriera

$$\dot{\mathbf{q}} = -\lambda \nabla t = -\lambda \left(\frac{\partial t}{\partial x}, \frac{\partial t}{\partial y}, \frac{\partial t}{\partial z} \right)$$
(1.1.1)

1.1.1 Ścianka płaska

Przewodzenie ciepła przez ściankę płaską:

$$\dot{q} = \frac{t_1 - t_2}{\frac{\delta}{\lambda}} \tag{1.1.2}$$

Przewodzenie ciepła przez ściankę płaską wielowarstwową (n warstw):

$$\dot{q} = \frac{t_1 - t_{n+1}}{\sum_{i=1}^{n} \frac{\delta_i}{\lambda_i}}$$
(1.1.3)

Przewodzenie ciepła przez ściankę wykonaną materiału, którego współczynnik przewodzenia ciepła zależy od temperatury i dany jest równaniem $\lambda = \lambda(t) = \lambda_0(1+bt)$:

$$\dot{q} = \frac{t_1 - t_2}{\frac{\delta}{\lambda_m}} \tag{1.1.4}$$

 λ_m jest to średni współczynnik przewodzenia ciepła obliczany jako:

$$\lambda_m = \lambda_0 (1 + bt_m) = \lambda_0 \left(1 + b \frac{t_1 + t_2}{2} \right) = \frac{\lambda_1 + \lambda_2}{2}$$
(1.1.5)

Rozkład temperatury w ścianie dany jest wzorem:

$$t(x) = \frac{1}{b} \left[\sqrt{\left(\frac{\lambda_1}{\lambda_0}\right)^2 - \frac{2b\dot{q}}{\lambda_0}x} - 1 \right]$$
(1.1.6)

Ogólny wzór na obliczanie temperatury średniej t_m :

$$t_m = \frac{1}{\delta} \int_0^\delta t(x) dx \tag{1.1.7}$$

We wzorach (1.1.5) i (1.1.6) λ_0 , λ_1 i λ_2 oznaczają odpowiednio współczynnik przewodzenia w temperaturze 0 ° C, t_1 i t_2 .

1.1.2 Ścianka cylindryczna

Przewodzenie ciepła przez ściankę cylindryczną:

$$\dot{q}_L = \frac{\dot{Q}}{L} = \frac{t_1 - t_2}{\frac{\ln(d_2/d_1)}{2\pi\lambda}}$$
(1.1.8)

Zależność między \dot{q} i \dot{q}_L jest następująca

$$\dot{q}_L = \pi d\dot{q} \tag{1.1.9}$$

Przewodzenie ciepła przez ściankę cylindryczną wielowarstwową (n warstw):

$$\dot{q}_L = \frac{Q}{L} = \frac{t_1 - t_{n+1}}{\sum_{i=1}^n \frac{\ln(d_{i+1}/d_i)}{2\pi\lambda_i}}$$
(1.1.10)

1.1.3 Ścianka kulista

Przewodzenie ciepła przez ściankę kulistą:

$$\dot{Q} = \frac{t_1 - t_2}{\frac{1}{4\pi\lambda} \left(\frac{1}{r_1} - \frac{1}{r_2}\right)} \tag{1.1.11}$$

Przewodzenie ciepła przez ściankę kulistą wielowarstwową (n warstw):

$$\dot{Q} = \frac{t_1 - t_{n+1}}{\sum_{i=1}^n \frac{1}{4\pi\lambda_i} \left(\frac{1}{r_i} - \frac{1}{r_{i+1}}\right)}$$
(1.1.12)

1.2 Przenikanie ciepła

Prawo Newtona (gęstość strumienia wnikania ciepła)

$$\dot{q} = \alpha \left(t - t_w \right) \tag{1.2.1}$$

Gęstość strumienia przenikania ciepła

$$\dot{q} = k\Delta t = \frac{\Delta t}{R} \tag{1.2.2}$$

1.2.1 Ścianka płaska

Przenikanie ciepła przez ściankę płaską:

$$\dot{q} = \frac{t_1 - t_2}{\frac{1}{\alpha_1} + \frac{\delta}{\lambda} + \frac{1}{\alpha_2}}$$
(1.2.3)

Przenikanie ciepła przez ściankę płaską wielowarstwową (n warstw):

$$\dot{q} = \frac{t_1 - t_{n+1}}{\frac{1}{\alpha_1} + \sum_{i=1}^n \frac{\delta_i}{\lambda_i} + \frac{1}{\alpha_{n+1}}}$$
(1.2.4)

1.2.2 Ścianka cylindryczna

Przenikanie ciepła przez ściankę cylindryczną:

$$\dot{q}_L = \frac{\dot{Q}}{L} = \frac{t_1 - t_2}{\frac{1}{\pi d_1 \alpha_1} + \frac{\ln(d_2/d_1)}{2\pi \lambda} + \frac{1}{\pi d_2 \alpha_2}}$$
(1.2.5)

Przenikanie ciepła przez ściankę cylindryczną wielowarstwową (n warstw):

$$\dot{q}_L = \frac{\dot{Q}}{L} = \frac{t_1 - t_{n+1}}{\frac{1}{\pi d_1 \alpha_1} + \sum_{i=1}^n \frac{\ln(d_{i+1}/d_i)}{2\pi \lambda_i} + \frac{1}{\pi d_{n+1} \alpha_{n+1}}}$$
(1.2.6)

Krytyczna grubość izolacji

$$d_{kr} = \frac{2\lambda_{iz}}{\alpha_z} \tag{1.2.7}$$

1.2.3 Ścianka kulista

Przenikanie ciepła przez ściankę kulistą:

$$\dot{Q} = \frac{t_1 - t_2}{\frac{1}{4\pi r_1^2 \alpha_1} + \frac{1}{4\pi \lambda} \left(\frac{1}{r_1} - \frac{1}{r_2}\right) + \frac{1}{4\pi r_2^2 \alpha_2}}$$
(1.2.8)

Przenikanie ciepła przez ściankę kulistą wielowarstwową (n warstw):

$$\dot{Q} = \frac{t_1 - t_{n+1}}{\frac{1}{4\pi r_1^2 \alpha_1} + \sum_{i=1}^n \frac{1}{4\pi \lambda_i} \left(\frac{1}{r_i} - \frac{1}{r_{i+1}}\right) + \frac{1}{4\pi r_{n+1}^2 \alpha_{n+1}}}$$
(1.2.9)

1.3 Wymiana ciepła przez pręty

1.3.1 Wzory ogólne

Nadwyżka temperatury:

$$\vartheta(x) = T(x) - T_{ot} \tag{1.3.1}$$

Równanie różniczkowe przekazywania ciepła w pręcie:

$$\frac{d^2\vartheta}{dx^2} - \frac{\alpha U}{\lambda A}\vartheta = \frac{d^2\vartheta}{dx^2} - m^2\vartheta$$
(1.3.2)

Współczynnikm:

$$m = \sqrt{\frac{\alpha U}{\lambda A}} \tag{1.3.3}$$

Rozwiązanie ogólne równania (1.3.2):

$$\vartheta = C_1 e^{mx} + C_2 e^{-mx} \tag{1.3.4}$$

1.3.2 Pręt nieskończenie długi

Rozkład nadwyżki temperatury wzdłuż pręta nieskończenie długiego:

$$\vartheta = (T_w - T_{ot}) e^{-mx} = \vartheta_0 e^{-mx}$$
(1.3.5)

Ilość ciepła oddawanego przez pręt nieskończenie długi:

$$\dot{Q} = \vartheta_0 A \lambda m \tag{1.3.6}$$

1.3.3 Pręt o skończonej długości izolowany na końcu

Pręt o skończonej długości izolowany na końcu:

$$\vartheta = \vartheta_0 \frac{\cosh\left[m\left(L-x\right)\right]}{\cosh\left(mL\right)} \tag{1.3.7}$$

Ilość ciepła oddawanego przez pręt zaizolowany na końcu:

$$\dot{Q} = \vartheta_0 A \lambda m \operatorname{tgh}(mL) \tag{1.3.8}$$

1.3.4 Pręt o skończonej długości nie izolowany na końcu

Rozkład nadwyżki temperatury wzdłuż pręta, gdy na jego końcu występuje wymiana ciepła przez konwekcję:

$$\vartheta = \vartheta_0 \frac{\cosh\left[m\left(L-x\right)\right] + \frac{\alpha_L}{\lambda m}\sinh\left[m\left(L-x\right)\right]}{\cosh\left(mL\right) + \frac{\alpha_L}{\lambda m}\sinh\left(mL\right)}$$
(1.3.9)

Ilość ciepła oddawanego przez pręt, gdy na jego końcu występuje wymiana ciepła przez konwekcję:

$$\dot{Q} = \vartheta_0 A \lambda m \frac{\frac{\alpha_L}{\lambda m} + \operatorname{tgh}(mL)}{1 + \frac{\alpha_L}{\lambda m} \operatorname{tgh}(mL)}$$
(1.3.10)

Uwaga: Wzory (1.3.9) i (1.3.10) są skomplikowane. W przypadku gdy $\alpha_L = \alpha$ można wydłużyć fikcyjnie pręt o długość $\Delta L = A/U$ i zastosować wzory (1.3.7) i (1.3.8) podstawiając za L wartość $L' = L + \Delta L$.

1.4 Wymiana ciepła przez żebra

1.4.1 Żebro proste o przekroju prostokątnym

Rys. 1.1. Żebro proste o przekroju prostokątnym [6]

Współczynnik $m \ (A_z = \delta b, P \approx 2b)$:

$$m = \sqrt{\frac{\alpha P}{\lambda A_z}} = \sqrt{\frac{2 \alpha}{\lambda \delta}} \tag{1.4.1}$$

Wzory wyprowadzone dla prętów można stosować dla żebra prostego pamiętając, żeL=h.

1.4.2 Żebro okrągłe o stałej grubości

Rys. 1.2. Żebro okrągłe o stałej grubości (pierścień) [2]

Ogólne równanie różniczkowe:

$$\frac{d^2\vartheta}{dz^2} + \frac{1}{z}\frac{d\vartheta}{dz} - \vartheta = 0$$
(1.4.2)

gdzie z = m r.

Rozwiązanie ogólne równania (1.4.2):

$$\vartheta = C I_0(z) + D K_0(z) \tag{1.4.3}$$

gdzie I i K to zmodyfikowane funkcje Bessela (rys. 1.3). Nadwyżka temperatury wzdłuż żebra, gdy można pominąć przejmowanie ciepła na powierzchni czołowej (zaizolowany koniec):

$$\vartheta = \vartheta_0 \frac{I_0(mr) K_1(mr_z) + I_1(mr_z) K_0(mr)}{I_0(mr_w) K_1(mr_z) + I_1(mr_z) K_0(mr_w)}$$
(1.4.4)

Strumień ciepła przepływający przez podstawę żebra (równe ciepłu oddawanemu przez to żebro):

$$\dot{Q}_0 = 2\pi r_w \lambda \delta m \vartheta_0 \psi \tag{1.4.5}$$

gdzie ψ wyrażone jest jako:

$$\psi = \frac{I_1(mr_z) K_1(mr_w) - I_1(mr_w) K_1(mr_z)}{I_0(mr_w) K_1(mr_z) + I_1(mr_z) K_0(mr_w)}$$
(1.4.6)

Wartości ψ można także odczytać z rys. 1.4.

x	$I_0(x)$	$K_0(x)$	$I_1(x)$	$K_1(x)$
0,0	1,000	00	0	80
0,1	1,003	2,447	0,050	9,854
0,2	1,010	1,753	0,101	4,776
0,3	1,023	1,373	0,152	3,056
0,4	1,040	1,115	0,204	2,184
0,5	1,064	0,924	0,258	1,656
0,6	1,092	0,775	0,314	1,303
0,7	1,126	0,661	0,372	1,050
0,8	1,166	0,565	0,433	0,862
0,9	1,213	0,487	0,497	0,717
1,0	1,266	0,421	0,565	0,602
1,2	1,394	0,318	0,715	0,435
1,4	1,553	0,244	0,886	0,320
1,6	1,750	0,188	1,085	0,241
1,8	1,989	0,159	1,317	0,183
2,0	2,279	0,114	1,591	0,140
2,5	3,289	0,062	2,517	0,0739
3,0	4,881	0,0347	3,395	0,0402
3,5	7,378	0,0196	6,206	0,0222
4,0	11,302	0,0112	9,759	0,0125
4,5	17,481	0,0064	15,389	0,00708
5,0	27,240	0,0037	24,336	0,00404

Rys. 1.3. Wartości zmodyfikowanych funkcji Bessela [6]

Rys. 1.4. Wartości funkcji pomocniczej ψ [2]

1.4.3 Sprawność żebra

Jest to stosunek ciepła przejmowanego przez żebro przy rzeczywistym rozkładzie temperatury do ciepła jakie przejęłoby żebro, gdyby temperatura wzdłuż jego długości była stała i równa temperaturze ścianki t_w . Dla żebra prostego o przekroju prostokątnym [2]:

$$\varepsilon_{zp} = \frac{\operatorname{th}(m\,L)}{m\,L} \tag{1.4.7}$$

Po wprowadzeniu oznaczeń: długość żebra okrągłego $L = r_z - r_w$ i $\rho = r_z/r_w$ wzór na sprawność żebra okrągłego zapisuje się jako:

$$\varepsilon_{zo} = \frac{2\,\psi}{(1+\rho)m\,L}\tag{1.4.8}$$

Sprawność żebra okrągłego można także odczytać z rys. 1.5.

Rys. 1.5. Sprawność żeber okrągłych o stałej grubości [2]

1.4.4 Ścianka ożebrowana

Strumień ciepła przenikający przez ściankę ożebrowaną:

$$\dot{Q} = A \frac{t_1 - t_2}{\frac{1}{\alpha_1} + \frac{\delta_w}{\lambda_w} + \frac{1}{\varphi \varepsilon_{oz} \alpha_2}}$$
(1.4.9)

gdzieAto pole powierzchni ścianki gładkiej, φ współczynnik ożebrowania równy

$$\varphi = \frac{A_{oz}}{A} = \frac{n\left(A_{pz} + A_{oz}\right)}{A} \tag{1.4.10}$$

gdzie A_{pz} oznacza powierzchnię jednego żebra, A_{mz} powierzchnię między żebrami (dla jednego segmentu), n liczba segmentów (żeber). Sprawność ścianki ożebrowanej:

$$\varepsilon_{oz} = 1 - \frac{n A_{pz}}{A_{oz}} (1 - \varepsilon_z) \tag{1.4.11}$$

Strumień ciepła oddawany przez konwekcję od przegrody ożebrowanej można także obliczyć jako

$$\dot{Q} = A_{oz} \varepsilon_{oz} \alpha (t_0 - t_{ot}) \tag{1.4.12}$$

1.5 Wymienniki ciepła

1.5.1 Wzory podstawowe

Rozkład temperatury czynników dla współprądu i przeciwprądu:

Rys. 1.6. Rozkłady temperatur czynników w wymienniku współprądowym i przeciwprądowym [2]

Średnia logarytmiczna różnica temperatur:

$$\Delta t_m = \frac{\Delta t_p - \Delta t_k}{\ln \frac{\Delta t_p}{\Delta t_k}} \tag{1.5.1}$$

Równanie Pecleta:

$$\dot{Q} = kA\Delta t_m \tag{1.5.2}$$

Pojemność cieplna strumienia:

$$\dot{W} = \dot{G}c_p \tag{1.5.3}$$

Końcowa różnica temperatur w wymienniku:

$$\Delta t_k = \Delta t_p e^{-kA\left(\frac{1}{W_1} \mp \frac{1}{W_2}\right)} \tag{1.5.4}$$

gdzie "minus" stosujemy dla przeciwprądu, a "plus" dla współprądu.

1.5.2 Parametry bezwymiarowe

$$\Phi = \frac{t_{1d} - t_{1w}}{t_{1d} - t_{2d}} = \frac{\Delta t_1}{\Delta t_{max}}$$
(1.5.5)

$$P = \frac{t_{2w} - t_{2d}}{t_{1d} - t_{2d}} = \frac{\Delta t_2}{\Delta t_{max}}$$
(1.5.6)

$$R = \frac{\Delta t_1}{\Delta t_2} = \frac{\dot{W}_2}{\dot{W}_1}$$
(1.5.7)

$$S = \frac{kA}{\dot{W}_1} \tag{1.5.8}$$

Dla współprądu:

$$P = \frac{1 - \exp\left[-S(1+1/R)\right]}{1+R}$$
(1.5.9)

Dla przeciwprądu:

$$P = \frac{1 - \exp\left[-S(1 - 1/R)\right]}{R - \exp\left[-S(1 - 1/R)\right]}$$
(1.5.10)

1.5.3 Przepływ krzyżowoprądowy

Dla wymienników o przepływie krzyżowoprądowym, moc cieplną wymiennika oblicza się z następującego wzoru

$$\dot{Q} = kA\Delta t_{mp}F \tag{1.5.11}$$

gdzie Δt_{mp} to średnia logarytmiczna różnica temperatur dla przeciw
prądu, Fwspółczynnik korekcyjny.

Rys. 1.7. Wartości współczynnika korekcyjnego F do obliczania wymienników ciepła krzyżowoprądowych o niemieszających się strumieniach [1]

1.5.4 Metoda ε -NTU

Stosunek pojemności cieplnych \dot{W}^*

$$\dot{W^*} = \frac{\dot{W}_{min}}{\dot{W}_{max}} \tag{1.5.12}$$

gdzie \dot{W}_{min} i \dot{W}_{max} to mniejsza i większa wartość z pojemności cieplnych $\dot{W_1}$ i $\dot{W_2}$. Wartość $\dot{W}^* = 0$ odpowiada skraplaczowi lub parowaczowi.

Efektywność wymiennika ciepła

$$\varepsilon = \frac{\dot{Q}}{\dot{Q}_{max}} \tag{1.5.13}$$

gdzie \dot{Q} to rzeczywisty strumień ciepła w wymienniku, \dot{Q}_{max} maksymalny możliwy strumień ciepła dla przepływu przeciwprądowego

$$\dot{Q}_{max} = \dot{W}_{min} \left(T_{1d} - T_{2d} \right)$$
 (1.5.14)

Liczba NTU (number of transfer units)

$$NTU = \frac{kA}{\dot{W}_{min}} \tag{1.5.15}$$

Efektywność dla przeciwprądu

$$\varepsilon = \frac{1 - \exp\left[-NTU\left(1 - \dot{W}^*\right)\right]}{1 - \dot{W}^* \exp\left[-NTU\left(1 - \dot{W}^*\right)\right]}$$
(1.5.16)

Efektywność dla współprądu

$$\varepsilon = \frac{1 - \exp\left[-NTU\left(1 + \dot{W}^*\right)\right]}{1 + \dot{W}^*} \tag{1.5.17}$$

Efektywność dla przeciw
prądu dla $\dot{W}^*=1$

$$\varepsilon = \frac{NTU}{1 + NTU} \tag{1.5.18}$$

Efektywność dla współprądu dla $\dot{W}^* = 1$

$$\varepsilon = \frac{1}{2} \left(1 - e^{-2NTU} \right) \tag{1.5.19}$$

Efektywność dla przeciw
prądu i współprądu dla $\dot{W}^*=0$ (parowanie lub kondensacja)

$$\varepsilon = 1 - e^{-NTU} \tag{1.5.20}$$

Dla bardziej skomplikowanych przypadków wartości ε odczytuje się z wykresów typu $\varepsilon=f(\dot{W}^*,NTU).$

1.6 Konwekcja wymuszona - opływ ciał

Jeżeli nie podano inaczej, właściwości termofizyczne czynników roboczych, potrzebne do obliczenia liczb kryterialnych, dobierane są z tablic dla temperatury średniej w warstwie przyściennej:

$$T_{sr} = \frac{T_{wsr} + T_{fsr}}{2}$$
(1.6.1)

1.6.1 Opływ walca kołowego

Dane z literatury zostały aproksymowane przez Churchilla i Bernsteina dla $Re\,Pr>0,2~[1]$

$$Nu = 0,3 + \frac{0,62Re^{1/2}Pr^{1/3}}{\left[1 + (0,4Pr)^{2/3}\right]^{1/4}} \left[1 + \left(\frac{Re}{282000}\right)^{5/8}\right]^{4/5}$$
(1.6.2)

Zależność (1.6.2) jest ważna dla prostopadłego opływu walca ($\varphi = 90^{\circ}$). Dla kątów natarcia strugi w zakresie $\varphi = 30 \div 90$, wynik należy przemnożyć przez poprawkę ε_{φ}

$$\varepsilon_{\varphi} = 1 - 0,54 \cos^2 \varphi \tag{1.6.3}$$

1.6.2 Opływ kuli

Dla opływu kuli Whitaker [1] rekomenduje wzór

$$Nu = 2 + \left(0, 4Re^{1/2} + 0, 06Re^{2/3}\right) Pr^{0,4} \left(\frac{\mu_f}{\mu_w}\right)^{1/4}$$
(1.6.4)

który jest ważny dla 3,5
 $\leq Re \leq 80000$ i 0,7 $\leq Pr \leq 380.$ W równaniu (1.6.4) parametry płynu wyznaczane są w temperaturz
e $T_f.$

1.6.3 Opływ cylindrów o różnym kształcie

Równanie na liczbę Nusselta dla opływu walców może być ogólnie zapisane jako

$$Nu = CRe^a Pr^{1/3} \tag{1.6.5}$$

gdzie stałe C i a odczytuje się z rys. 1.8.

Cross section			
of the cylinder	Fluid	Range of Re	Nusselt number
	Gas or liquid	0.4–4 4–40 40–4000 4000–40,000 40,000–400,000	$\begin{array}{l} Nu = 0.989 Re^{0.330} \ Pr^{1/3} \\ Nu = 0.911 Re^{0.385} \ Pr^{1/3} \\ Nu = 0.683 Re^{0.466} \ Pr^{1/3} \\ Nu = 0.193 Re^{0.618} \ Pr^{1/3} \\ Nu = 0.027 Re^{0.805} \ Pr^{1/3} \end{array}$
Square	Gas	5000-100,000	$Nu = 0.102 Re^{0.675} Pr^{1/3}$
Square (tilted 45°)	Gas	5000-100,000	$Nu = 0.246 Re^{0.588} Pr^{1/3}$
Hexagon	Gas	5000-100,000	$Nu = 0.153 Re^{0.638} Pr^{1/3}$
Hexagon (tilted 45°)	Gas	5000–19,500 19,500–100,000	$\label{eq:Nu} \begin{split} Ν = 0.160 Re^{0.638} Pr^{1/3} \\ Ν = 0.0385 Re^{0.782} Pr^{1/3} \end{split}$
Vertical plate	Gas	4000-15,000	$Nu = 0.228 Re^{0.731} Pr^{1/3}$
Ellipse	Gas	2500-15,000	$Nu = 0.248 Re^{0.612} Pr^{1/3}$

Rys. 1.8. Zależności kryterialne na liczbę Nusselta Nu dla opływu cylindrów [1]

Uwaga: wzory (1.6.2) i (1.6.4) dają dokładniejsze wyniki niż (1.6.5).

1.6.4 Opływ pęczka rur

Średnica zewnętrzna rurek jest wymiarem charakterystycznym. Liczba Reynoldsa jest zdefiniowana przy użyciu prędkości maksymalnej (dla przekroju minimalnego między rurkami).

$$Re_D = \frac{wD\rho}{\mu} \tag{1.6.6}$$

Zukauskas [1] zaproponował następującą zależność

$$Nu = CRe_D^m Pr^n \left(\frac{Pr}{Pr_w}\right)^{0.25} \tag{1.6.7}$$

Stałe we wzorze (1.6.7) dobiera się z rys. 1.9 dla
 0,7 < Pr < 500.Właściwości płynu dobierane są dla średniej temperatury płynu

$$T_{sr} = \frac{T_p + T_k}{2}$$
(1.6.8)

Arrangement	Range of Re _D	Correlation		
	0–100	$Nu_D = 0.9 \text{ Re}_D^{0.4} \text{Pr}^{0.36} (\text{Pr/Pr}_s)^{0.25}$		
In line	100-1000	$Nu_D = 0.52 \text{ Re}_D^{0.5} \text{Pr}^{0.36} (\text{Pr/Pr}_s)^{0.25}$		
in-line	$1000-2 \times 10^{5}$	$Nu_D = 0.27 \text{ Re}_D^{0.63} Pr^{0.36} (Pr/Pr_s)^{0.25}$		
	$2 imes 10^5 - 2 imes 10^6$	$Nu_D = 0.033 \text{ Re}_D^{0.8} \text{Pr}^{0.4} (\text{Pr/Pr}_s)^{0.25}$		
	0–500	$Nu_D = 1.04 \text{ Re}_D^{0.4} \text{Pr}^{0.36} (\text{Pr/Pr}_s)^{0.25}$		
Champaned	500-1000	$Nu_D = 0.71 \text{ Re}_D^{0.5} \text{Pr}^{0.36} (\text{Pr/Pr}_s)^{0.25}$		
Staggered	$1000-2 \times 10^{5}$	$Nu_D = 0.35(S_T/S_L)^{0.2} Re_D^{0.6} Pr^{0.36} (Pr/Pr_s)^{0.25}$		
	2×10^{5} – 2×10^{6}	$Nu_D = 0.031(S_T/S_L)^{0.2} Re_D^{0.8}Pr^{0.36}(Pr/Pr_s)^{0.25}$		

Rys. 1.9. Zależności kryterialne na liczbę Nusselta Nu dla opływu pęczka rur [1] (*in-line* - układ korytarzowy, *staggered* - układ szachownicowy

Jeżeli kąt napływu strugi na pęczek rur jest inny od 90°, należy przemnożyć wynik otrzymany z równania (1.6.7) przez poprawkę ε_{φ} , której wartość odczytuje się z rys. 1.10.

Rys. 1.10. Wartość poprawki ε_{φ} dla opływu pęczka rur [6]

Zależność (1.6.7) jest ważna dla liczby rzędów ru
r $N_L \ge 16.$ Dla układów o mniejszej liczbie rzędów rur należy zastosować poprawk
ę ε_N

$$Nu_{DN} = Nu_D \varepsilon_N \tag{1.6.9}$$

Jej wartość odczytuje się z rys. 1.11.

NL	1	2	3	4	5	7	10	13
In-line	0.70	0.80	0.86	0.90	0.93	0.96	0.98	0.99
Staggered	0.64	0.76	0.84	0.89	0.93	0.96	0.98	0.99

Rys. 1.11. Wartość poprawki ε_N dla pęczków rur o liczbie rzędów rur $N_L < 16$ [1] (*in-line* - układ korytarzowy, staggered - układ szachownicowy

1.7 Konwekcja wymuszona - przepływ w kanałach

Jeżeli nie podano inaczej, właściwości termofizyczne czynników roboczych, potrzebne do obliczenia liczb kryterialnych, dobierane są z tablic dla temperatury średniej płynu.

1.7.1 Przepływ laminarny w rurze

Dla w pełni rozwiniętego przepływu laminarnego Sieder i Tate podali następującą zależność [6]

$$Nu = 1,86 \left(Re \, Pr\right)^{1/3} \left(\frac{d}{L}\right)^{1/3} \left(\frac{\mu}{\mu_w}\right)^{0,14} \tag{1.7.1}$$

Zależność ta jest ważna dla 0,48 < $Pr < 16700, 0,0044 < \frac{\mu}{\mu_w} < 9,75,$ $\left(\frac{Re Pr}{L/d}\right)^{1/2} \left(\frac{\mu}{\mu_w}\right)^{0,14} > 2.$

1.7.2 Przepływ turbulentny w rurze

Liczbę Nusselta oblicza się z równania Dittusa-Boeltera [1]

$$Nu = 0,023Re^{0.8}Pr^n \tag{1.7.2}$$

gdzie dla przypadku grzania n = 0, 4 i dla przypadku chłodzenia n = 0, 3. Zależność jest ważna dla $Re > 10^4$ i $0, 7 \le Pr \le 160$. Równanie (1.7.2) daje błąd nawet do 25%. Żeby uzyskać dokładniejsze wyniki ($\approx 10\%$) stosuje się równanie Gnielinskiego [1]

$$Nu = \frac{(f/8) (Re - 1000) Pr}{1 + 12,7 (f/8)^{0.5} (Pr^{2/3} - 1)}$$
(1.7.3)

gdzie współczynnik f obliczany jest jako

$$f = (0, 79 \ln Re - 1, 64)^{-2} \tag{1.7.4}$$

Równanie (1.7.3) jest ważne dla $0,5 \le Pr \le 2000$ i $3 \times 10^3 \le Re \le 5 \times 10^6$.

1.7.3 Średnica ekwiwalentna

Dla przepływów przez kanały o przekroju niekołowym, wymiarem charakterystycznym jest średnica ekwiwalentna (hydrauliczna)

$$d_e = \frac{4A}{U} \tag{1.7.5}$$

Do wzoru (1.7.5) należy wstawiać pole przekroju Ai obwód $U,\,{\rm które}$ są zwilżane przez płyn.

1.7.4 Przepływ w szczelinie pierścieniowej

Dla 12000 < Re < 220000i $D_z/D_w = 1,65\div 17$ można stosować dla dowolnego płynu następującą zależność [2]

$$Nu = 0,02Re^{0.8}Pr^{1/3}\varepsilon_D \tag{1.7.6}$$

Dla powierzchni zewnętrznej $\varepsilon_D=1,$ dla wewnętrznej

$$\varepsilon_D = 0.87 \left(\frac{D_z}{D_w}\right)^{0.53} \tag{1.7.7}$$

1.8 Konwekcja naturalna

Wszystkie właściwości płynu są określane dla średniej temperatury warstwy przy-ściennej.

length L _c	Range of Ra	NU	
	10 ⁴ -10 ⁹ 10 ⁹ -10 ¹³	$Nu = 0.59Ra_{L}^{1/4}$ $Nu = 0.1Ra_{L}^{1/3}$	(9-19) (9-20)
L	Entire range	$Nu = \left\{ 0.825 + \frac{0.387 \text{Ra}_{1}^{1/6}}{[1 + (0.492/\text{Pr})^{9/16}]^{8/27}} \right\}^2$ (complex but more accurate)	(9-21)
		Use vertical plate equations for the upper surface of a cold plate and the lower surface of a hot plate	
L		Replace g by g cos θ for Ra < 10 ⁹	
	10 ⁴ -10 ⁷ 10 ⁷ -10 ¹¹	Nu = 0.54Ra ^{1,4} Nu = 0.15Ra ^{1,4}	(9-22) (9-23)
A _s Ip			
	105-1011	Nu = 0.27Ra ^{1,44}	(9-24)
L		A vertical cylinder can be treated as a vertical plate when	
		$D \ge \frac{35L}{Gr_L^{1/4}}$	
D	$Ra_D \leq 10^{12}$	$Nu = \left\{0.6 + \frac{0.387 Ra_{2}^{16}}{(1 + (0.559)/Pr)^{9/16})^{9/2}}\right\}^{2}$	(9-25)
D	$\label{eq:RaD} \begin{array}{l} Ra_{D} \leq 10^{11} \\ (Pr \geq 0.7) \end{array}$	$Nu = 2 + \frac{0.589 \text{Ra}_{b}^{3/4}}{(1 + (0.469/\text{Pr})^{9/16})^{4/9}}$	(9-26)
	L L D D	religit L_c Range of Ra $10^4 - 10^9$ $10^4 - 10^9$ L Entire range L $10^4 - 10^7$ D $Ra_0 \le 10^{11}$ D $Ra_0 \le 10^{11}$ D $Ra_0 \le 10^{11}$ D $Ra_0 \le 10^{11}$	$L = \begin{bmatrix} 10^{4} - 10^{9} \\ 10^{4} - 10^{13} \\ 10^{4} - 10^{13} \end{bmatrix} = \begin{bmatrix} 10^{4} - 10^{9} \\ 10^{4} - 10^{13} \\ 10^{4} - 10^{13} \end{bmatrix} = \begin{bmatrix} 10^{4} - 10^{2} \\ 10^{4} - 10^{13} \\ 10^{4} - 10^{13} \end{bmatrix} = \begin{bmatrix} 10^{4} - 10^{2} \\ 10^{4} - 10^{2} \\ 10^{4} - 10^{2} \end{bmatrix} = \begin{bmatrix} 10^{4} - 10^{2} \\ 10^{4} - 10^{2} \\ 10^{2} - 10^{11} \end{bmatrix} = \begin{bmatrix} 10^{4} - 10^{2} \\ 10^{2} - 10^{11} \\ 10^{4} - 10^{2} \\ 10^{2} - 10^{11} \end{bmatrix} = \begin{bmatrix} 10^{4} - 10^{2} \\ 10^{2} - 10^{11} \\ 10^{4} - 10^{2} \\ 10^{2} - 10^{11} \end{bmatrix} = \begin{bmatrix} 10^{4} - 10^{2} \\ 10^{2} - 10^{11} \\ 10^{4} - 10^{2} \\ 10^{4} - 10^{2} \end{bmatrix} = \begin{bmatrix} 10^{4} - 10^{2} \\ 10^{4} - 10^{2$

Rys. 1.12. Wzory kryterialne na liczbę Nusselta dla konwekcji swobodnej dla najczęstszych przypadków $\left[1\right]$

1.9 Konwekcja przy zmianie fazy

to be continued \ldots

Rozdział 2

Podstawy termodynamiki

Rozdział 3

Teoria maszyn cieplnych/Termodynamika

Prezentowany w tym rozdziale materiał został opracowany na podstawie [5].

3.1 Gazy wilgotne

3.1.1 Podstawowe pojęcia

Gazem wilgotnym nazywamy mieszaninę gazu suchego w ilości m_g z parą w ilości m_p (np. wodną).

$$m = m_g + m_p \tag{3.1.1}$$

Najważniejsze gazy wilgotne to powietrze oraz spaliny. Dla niedużych ciśnień (np. ciśnienia atmosferycznego) obowiązuje prawo Daltona, zgodnie z którym ciśnienie gazu wilgotnego p jest sumą ciśnienia składnikowego (parcjalnego) gazu suchego p_g i pary p_p

$$p = p_g + p_p \tag{3.1.2}$$

W danej temperaturze Tmaksymalne ciśnienie jakie może osiągnąć para jest równe ciśnieniu nasycenia p_s

$$p_{pmax} = p_s \tag{3.1.3}$$

Innymi słowy gdy $p_p = p_s$, dyfuzja pary do gazu ustaje i aby zwiększyć p_p należy zwiększyć temperaturę. Wzór (3.1.3) obowiązuje w przypadkach gdy ciśnienie gazu nie jest bardzo wysokie \rightarrow sprawdź "efekt Poyntinga". Dla wysokich ciśnień maksymalne możliwe ciśnienie pary jest wyższe niż p_s . Dodatkowo należy pamiętać, że ciśnienie nasycenia rośnie z temperaturą. Jeżeli temperaturze gazu odpowiada $p_s > p$ to wtedy

$$p_{pmax} = p \tag{3.1.4}$$

Wilgotnością bezwzględną gazu (wilgocią) ρ_p nazywamy gęstość pary wodnej, czyli

$$\rho_p = \frac{m_p}{V} \tag{3.1.5}$$

gdzie Voznacza objętość gazu wilgotnego. Wilgoć możemy obliczyć stosując równanie Clapeyrona dla pary

$$\rho_p = \frac{p_p}{R_p T} \tag{3.1.6}$$

gdzie R_p to indywidualna stała gazowa pary (dla pary wodnej $R_p = 461, 5 \frac{J}{\text{kg K}}$), T temperatura gazu wilgotnego. Z równania (3.1.6) wynika, że maksymalna wilgoć występuje dla ciśnienia pary równemu ciśnieniu nasycenia

$$\rho_{pmax} = \rho_p'' = \frac{p_s}{R_p T}$$
(3.1.7)

Wilgotnością względną nazywamy stosunek rzeczywistej wilgo
ci w temperaturze Tdo wilgoci maksymalnej jaką można os
iągnąć w tej temperaturze

$$\varphi = \left(\frac{\rho_p}{\rho_p''}\right)_T = \left(\frac{p_p}{p_s}\right)_T \tag{3.1.8}$$

Stopniem zawilżenia Xgazu wilgotnego nazywamy stosunek masy pary do masy gazu suchego

$$X = \frac{m_p}{m_g} = \frac{M_p}{M_g} \frac{\varphi p_s}{p - \varphi p_s}$$
(3.1.9)

Dla powietrza wilgotnego $\frac{M_p}{M_g}=\frac{18,016}{28,96}\approx 0,622$ i wtedy

$$X = 0,622 \frac{\varphi p_s}{p - \varphi p_s} \tag{3.1.10}$$

Używając definicji X możemy zapisać masę gazu wilgotnego m jako

$$m = m_g(1+X) \tag{3.1.11}$$

Dla niedużych ciśnień równanie Clapeyrona możemy zapisać dla: samego gazu suchego, dla samej pary lub dla gazu wilgotnego (mieszaniny). Dla ostatniego przypadku mamy wzór

$$pV = mRT \tag{3.1.12}$$

We wzorze (3.1.12) Roznacza zastępczą indywidualną stała gazową gazu wilgotnego, którą obliczamy jako

$$R = \frac{R_g + XR_p}{1 + X}$$
(3.1.13)

Dla powietrza wilgotnego $R_g=287,1\,\frac{\rm J}{\rm kg\,K}$ i wtedy wzór (3.1.13) przyjmuje postać

$$R = \frac{0,622 + X}{1 + X} R_p \tag{3.1.14}$$

Gęstość gazu wilgotnego obliczamy jako sumę gęstości gazu suchego i pary pod ich ciśnieniami składnikowymi

$$\rho = (\rho_g)_{T,p_g} + (\rho_p)_{T,p_p} \tag{3.1.15}$$

Obliczając $(\rho_g)_{T,p_a}$ i $(\rho_p)_{T,p_a}$ z równania Clapeyrona i podstawiając do (3.1.15) otrzymamy

$$\rho = \frac{p_g}{R_g T} + \frac{p_p}{R_p T} = \frac{p_g}{R_g T} \left(1 + \frac{p_p V}{R_p T} \frac{R_g T}{p_g V} \right) = \frac{p_g}{R_g T} (1 + X)$$
(3.1.16)

W przemianach gazu wilgotnego (oprócz mieszania) masa gazu suchego pozostaje taka sama, natomiast może zmieniać się masa pary. Dlatego wszystkie wielkości dla gazu wilgotnego odniesione są do kilograma gazu suchego. Na przykład jednostką entalpii właściwej dla gazu wilgotnego jest $\frac{J}{\text{kg gazu suchego}}$. W bilansach energetycznych bierze się pod uwagę tylko masę gazu suchego, a entalpię oblicza się dla (1 + X) kg powietrza wilgotnego (czyli ilości gazu wilgotnego zawierająca jednostkę ilości gazu suchego). Entalpia gazu wilgotnego zdefiniowana jest więc następująco

$$i_{1+X} = i_g + X i_p \tag{3.1.17}$$

W obliczeniach zwykle stosujemy jednak wzór

$$i_{1+X} = c_{pg}t + X\left(r_0 + c_{pp}t\right) \tag{3.1.18}$$

gdzie c_{pq} i c_{pp} oznaczają odpowiednio ciepła właściwe przy stałym ciśnieniu dla gazu suchego i pary, natomiast t to temperatura w stopniach Celsjusza. Dla powietrza wilgotnego: $c_{pg} = 1005 \frac{\text{J}}{\text{kg K}}, c_{pp} = 1860 \frac{\text{J}}{\text{kg K}}, r_0 = 2501 \frac{\text{J}}{\text{kg}}.$ Jeśli gaz jest zamglony (X > X''), przy obliczaniu entalpii gazu wilgotnego należy

dodatkowo uwzględnić entalpię kropel cieczy

$$i_{1+X} = i_{1+X''} + (X - X'')c_{pw}t = c_{pg}t + X''(r_0 + c_{pp}t) + (X - X'')c_{pw}t \quad (3.1.19)$$

gdzie $i_{1+X''}$ i X'' to entalpia właściwa i stopień zawilżenia gazu zawierającego suchą parę nasyconą (czyli dla $\varphi = 100\%$). X" to inaczej maksymalna zawartość pary wodnej suchej w danej temperaturze. Dla powietrza zamglonego wodą $c_{pw} = 4190 \frac{J}{kgK}$ Entalpię gazu wilgotnego zawierającego m_g kg gazu suchego obliczamy jako

$$I = m_g i_{1+X} (3.1.20)$$

Energię wewnętrzną gazu wilgotnego oblicza się jako

$$u_{1+X} = i_{1+X} - pv(1+X) \tag{3.1.21}$$

gdzie v to objętość właściwa gazu wilgotnego.

3.1.2 Wykres Moliera *i*-X

Rys. 3.1. Wyznaczanie ciśnienia składnikowego p_p , ciśnienia nasycenia p_s i temperatury punktu rosy t_R pary na wykresie i-X

3.1.3 Przemiany gazu wilgotnego

Suszenie

Celem suszenia jest usunięcie wilgoci z materiału suszonego poprzez przepuszczanie przez niego w komorze suszenia gazu o jak najmniejszej wilgotności. W celu zmniejszenia wilgotności gaz jest najpierw podgrzewany. W podejściu inżynierskim, proces suszenia uważa się jako proces mieszania gazu wilgotnego (suszącego) z wodą ciekłą pochodzącą z materiału suszonego. Podobnie więc jak przy nawilżaniu, punkt określający stan gazu wilgotnego przesuwa się wzdłuż linii prostej, której nachylenie opisane jest jako

$$\frac{\Delta i}{\Delta X} = c_{pw}t \tag{3.1.22}$$

Prosta o pochyleniu (3.1.22) prawie pokrywa się z linią i = idem dlatego proces suszenia uważa się jako izentalpowy. Ciepło doprowadzone w suszarni

$$Q_{1-2} = m_g \left(i_{(1+X)2} - i_{(1+X)1} \right) = m_g \left(i_{(1+X)3} - i_{(1+X)1} \right)$$
(3.1.23)

Ilość odparowanej wilgoci

$$m_w = m_g \left(X_3 - X_2 \right) = m_g \left(X_3 - X_1 \right) \tag{3.1.24}$$

Jednostkowe ciepło doprowadzone w suszarni (na 1 kg odparowanej wilgoci)

$$q = \frac{Q_{1-2}}{m_w} = \frac{i_{(1+X)3} - i_{(1+X)1}}{X_3 - X_1} = \frac{\Delta i_{1-3}}{\Delta X_{1-3}}$$
(3.1.25)

Ciepło jednostkowe można wyznaczyć za pomocą podziałki kierunkowej na wykresie i - X. W przypadku występowania strat ciepła w suszarni q_{str} , należy je dodać do wyniku uzyskanego ze wzoru (3.1.25)

3.2 Spalanie

Paliwa składają się z substancji palnej (węgiel, wodór, siarka) i balastu (popiół i wilgoć dla paliw stałych i ciekłych oraz azot dwutlenek węgla i para wodna dla paliw gazowych). Substraty (powietrze + paliwo) oznaczamy znakiem *prim* ('), produkty (spaliny gazowe, produkty stałe i ciekłe) oznaczamy znakiem *bis* ("). Spalanie jest niezupełne jeżeli w produktach obecne są gazy palne (CO, H_2 , CH_4). Spalanie jest niecałkowite jeżeli w produktach znajdują się stałe składniki palne.

3.2.1 Skład paliw gazowych

Skład paliw gazowych określa się za pomocą udziałów molowych składników w gazie suchym i oznacza symbolami chemicznymi (np. H_2 , CO, C_mH_n , ...). Jednostką paliwa gazowego jest 1 kmol gazu suchego. Ilość wegla C

$$n'_{C} = CO + CH_{4} + mC_{m}H_{n} + CO_{2} \frac{\text{kmol}}{\text{kmol gazu suchego paliwa}}$$
(3.2.1)

Ilość wodoru ${\cal H}_2$

$$n'_{H_2} = H_2 + 2CH_4 + \frac{1}{2}nC_mH_n \quad \frac{\text{kmol}}{\text{kmol gazu suchego paliwa}}$$
(3.2.2)

Ilość tlenu ${\cal O}_2$

$$n'_{O_2} = \frac{1}{2}CO + CO_2 + O_2 \quad \frac{\text{kmol}}{\text{kmol gazu suchego paliwa}}$$
(3.2.3)

Ilość azotu ${\cal N}_2$

$$n'_{N_2} = N_2 \frac{\text{kmol}}{\text{kmol gazu suchego paliwa}}$$
 (3.2.4)

Ilość wilgoci w gazie

$$n'_{H_2O} = X_{zg} \tag{3.2.5}$$

gdzie X_{zg} to molowy stopień zawilżenia gazu

$$X_{zg} = \frac{p_p}{p - p_p} \tag{3.2.6}$$

gdzie p_p to ciśnienie cząstkowe pary, pciśnienie gazu.

3.2.2 Skład paliw stałych

Skład paliw stałych określa się za pomocą udziałów masowych oznaczonych małymi literami: c - węgiel, h - wodór, s - siarka, o - tlen, n - azot, w - wilgoć, p - popiół. Czasem siarkę dołącza się do węgla jeśli jej ilość jest niewielka. Jednostką paliwa stałego jest 1 kg paliwa mokrego.

Ilość węgla ${\cal C}$

$$n'_C = \frac{c}{12} \quad \frac{\text{kmol}}{\text{kg}} \tag{3.2.7}$$

Ilość siarki ${\cal S}$

$$n'_S = \frac{s}{32} \quad \frac{\text{kmol}}{\text{kg}} \tag{3.2.8}$$

Ilość wodoru ${\cal H}_2$

$$n'_{H_2} = \frac{h}{2} \frac{\text{kmol}}{\text{kg}} \tag{3.2.9}$$

Ilość tlenu ${\cal O}_2$

$$n'_{O_2} = \frac{o}{32} \frac{\text{kmol}}{\text{kg}}$$
 (3.2.10)

Ilość azotu ${\cal N}_2$

$$n'_{N_2} = \frac{n}{28} \frac{\text{kmol}}{\text{kg}}$$
 (3.2.11)

Ilość wilgoci w gazie

$$n'_{H_2O} = \frac{w}{18} \frac{\text{kmol}}{\text{kg}}$$
 (3.2.12)

3.2.3 Ilość utleniacza przy spalaniu zupełnym i całkowitym

Teoretyczna ilość tlenu

$$n_{O_2 \min} = n'_C + n'_S + \frac{1}{2}n'_{H_2} - n'_{O_2} \text{ kmol/j.p.}$$
 (3.2.13)

gdzie j.p. oznacza $\frac{\rm kmol}{\rm kmol\,gazu\,suchego\,paliwa}$ lub $\frac{\rm kmol}{\rm kg}$ w zależności od rodzaju paliwa. Teoretyczna ilość utleniacza

$$n_{a\,min} = \frac{n_{O_2\,min}}{z_{O_2}}$$
 kmol/j.p. (3.2.14)

gdzie z_{O_2} to udział molowy tlenu. Dla powietrza atmosferycznego $z_{O_2}=0,21.$ Stosunek nadmiaru powietrza

$$\lambda = \frac{n_a'}{n_{a\,min}} \tag{3.2.15}$$

gdzie n'_a to rzeczywista ilość powietrza użyta przy spalaniu.

3.2.4 Skład spalin przy spalaniu zupełnym i całkowitym

Ilość dwutlenku węgla ${\cal CO}_2$

$$n_{CO_2}^{\prime\prime} = n_C^{\prime} \quad \frac{\text{kmol}}{\text{j.p.}} \tag{3.2.16}$$

Ilość dwutlenku siarki SO_2

$$n_{SO_2}^{\prime\prime} = n_S^{\prime} \frac{\text{kmol}}{\text{j.p.}}$$
(3.2.17)

Ilość azotu ${\cal N}_2$

$$n_{N_2}'' = n_{N_2}' + z_{N_2} n_a' \frac{\text{kmol}}{\text{j.p.}}$$
(3.2.18)

gdzie z_{N_2} to udział molowy azotu w utleniaczu. Dla powietrza atmosferycznego $z_{N_2}=0,79.$

Ilość tlenu ${\cal O}_2$

$$n_{O_2}'' = z_{O_2} n_a' - n_{O_2 \min} = z_{O_2} (\lambda - 1) n_{a \min} \frac{\text{kmol}}{\text{j.p.}}$$
(3.2.19)

Ilość wilgoci

$$n_{H_2O}'' = n_{H_2}' + n_{H_2O}' + X_{za} n_a' \frac{\text{kmol}}{\text{j.p.}}$$
(3.2.20)

gdzie X_{za} to molowy stopień zawilżenia powietrza użytego do spalania. Jednostkowa ilość spalin suchych $n_{ss}^{\prime\prime}$

$$n_{ss}'' = n_{CO_2}'' + n_{SO_2}'' + n_{N_2}'' + n_{O_2}'' \frac{\text{kmol}}{\text{j.p.}}$$
(3.2.21)

Udziały molowe składników spalin suchych

$$[CO_2] = \frac{n''_{CO_2}}{n''_{ss}}, \ [SO_2] = \frac{n''_{SO_2}}{n''_{ss}}, \ [N_2] = \frac{n''_{N_2}}{n''_{ss}}, \ [O_2] = \frac{n''_{O_2}}{n''_{ss}},$$
(3.2.22)

Molowy stopień zawilżenia spalin

$$[H_2O] = X_z'' = \frac{n_{H_2O}''}{n_{ss}''}$$
(3.2.23)

Teoretyczny udział molowy dwutlenku węgla $\left[CO_2\right]$

$$k_{max} = \left(\frac{n_{CO_2}'}{n_{ss}''}\right)_{\lambda=1} \tag{3.2.24}$$

3.2.5 Spalanie niezupełne i niecałkowite

Bilans wegla: $wegiel \ w \ paliwie = wegiel \ w \ spalinach \ i \ popiele$

$$n'_{C} = n''_{ss} \left([CO_2] + [CO] \right) + \frac{1}{12P} (G_z c_z + G_u c_u) \ kmol/j.p.$$
(3.2.25)

gdzie P to zużycie paliwa, G_z , G_u ilość żużla i pyłu powstałego z ilości P paliwa, c_z , c_u udział masowy węgla w żużlu i pyle.

Bilans siarki: $siarka \ w \ paliwie = siarka \ w \ spalinach \ i \ popiele$

$$n'_{S} = n''_{ss}[SO_2] + \frac{1}{32P}(G_z s_z + G_u s_u) \ kmol/j.p.$$
(3.2.26)

gdzie s_z , s_u to udział masowy siarki w żużlu i pyle.

Bilans azotu: azot w paliwie i powietrzu = azot w spalinach

$$n'_{N_2} + z_{N_2} n'_a = n''_{ss} [N_2] \ kmol/j.p.$$
(3.2.27)

Bilans wodoru: wodór w paliwie, wilgoci paliwa i powietrza = wodór w wilgoci w spalinach

$$n'_{H_2} + n'_{H_2O} + X_{za}n'_a = n''_{H_2O} \ kmol/j.p.$$
(3.2.28)

Bilans tlenu: tlen w paliwie, powietrzu i wilgoci = tlen w CO_2 , CO, SO_2 i postaci wolnej

$$n'_{O_2} + \frac{1}{2}n'_{H_2O} + z_{O_2}n'_a + \frac{1}{2}X_{za}n'_a = \frac{1}{2}n''_{H_2O} + n''_{ss}\left([CO_2] + \frac{1}{2}[CO] + [SO_2] + [O_2]\right) kmol/j.p$$
(3.2.29)

Różnica bilansu tlenu i wodoru

$$n'_{O_2} - \frac{1}{2}n'_{H_2} + z_{O_2}n'_a = n''_{ss}\left([CO_2] + \frac{1}{2}[CO] + [SO_2] + [O_2]\right) \ kmol/j.p. \quad (3.2.30)$$

3.3 Przepływy gazów

3.3.1 Założenia, prędkość średnia, równanie ciągłości

Teoria przepływów oparta jest na następujących założeniach:

- przepływ jest jednowymiarowy
- w dowolnym przekroju wektory prędkości są jednakowe i są do siebie równoległe
- w dowolnym przekroju temperatura w każdym punkcie ma taką samą wartość
- zbieżność kanału jest niewielka
- w równaniach używana jest prędkość średnia (masowa, objętościowa lub impulsowa)

Prędkość średnia masowa w_m

$$\dot{m} w_m^2 = \int_A \rho \, w^3 \, dA$$
 (3.3.1)

Prędkość średnia objętościowa w'_m

$$A w'_m = \int_A w \, dA \tag{3.3.2}$$

Prędkość średnia impulsowa $w_m^{\prime\prime}$

$$\dot{m} w_m'' = \int_A \rho \, w^2 \, dA \tag{3.3.3}$$

gdzie A to pole przekroju kanału.

Równanie ciągłości strugi zdefiniowane jest następująco

$$\dot{m} = \rho_1 A_1 w_1 = \rho_2 A_2 w_2 = const \tag{3.3.4}$$

3.3.2 Równanie energii

Dla dowolnych dwóch przekrojów 1 i 2 można napisać bilans energii

$$i_1 + \frac{w_1^2}{2} + q_{1-2} = i_2 + \frac{w_2^2}{2}$$
(3.3.5)

gdzie *i* to entalpia czynnika, *w* prędkość czynnika, q_{1-2} ciepło doprowadzone z zewnątrz pomiędzy przekrojami 1 i 2. Przepływy w dyszach często rozpatruje się jako adiabatyczny i wtedy $q_{1-2} = 0$ i równanie (3.3.5) przechodzi do prostej postaci

$$i_1 + \frac{w_1^2}{2} = i_2 + \frac{w_2^2}{2} \tag{3.3.6}$$

Z równania (3.3.6) (lub (3.3.6)) można wyznaczyć prędkość strugi w przekroju 2

$$w_2 = \sqrt{2\left(i_1 - i_2 + \frac{w_1^2}{2}\right)} \tag{3.3.7}$$

Po wprowadzeniu entalpii spoczynkowej (entalpia spiętrzenia)

$$i_0 = i + \frac{w^2}{2} \tag{3.3.8}$$

Równanie (3.3.7) zapisujemy jako

$$w_2 = \sqrt{2(i_0 - i_2)} = \sqrt{2c_p(T_0 - T_2)} = \sqrt{2\frac{\kappa}{\kappa - 1}R(T_0 - T_2)}$$
(3.3.9)

gdzie c_p ciepło właściwe przy stałym ciśnieniu, T temperatura, κ wykładnik adiabaty, R indywidualna stała gazowa czynnika. Jeśli dodatkowo założy się (w pierwszym przybliżeniu), że przemiana 1-2 jest izentropowa (przepływ odbywa się bez tarcia), możemy napisać

$$w_2 = w_{2s} = \sqrt{2c_p(T_0 - T_s)} = \sqrt{2\frac{\kappa}{\kappa - 1}p_0v_0 \left[1 - \left(\frac{p_2}{p_0}\right)^{\frac{\kappa - 1}{\kappa}}\right]}$$
(3.3.10)

Równanie (3.3.10) nazywamy wzorem de Saint Venanta. W rzeczywistości przepływy gazów odbywają się z tarciem i parametry w przekroju 2 należy obliczać z równania politropy, gdzie wykładnik politropy $m < \kappa$. W praktyce jednak, w celu obliczenia prędkości rzeczywistej w przekroju 2 (w_2) korzysta się ze współczynnika stosunku prędkości φ , który jest miarą strat występujących podczas przepływu

$$\varphi = \frac{w_2}{w_{2s}} \tag{3.3.11}$$

Wprowadzając pojęcie definicji dyszy η_d

$$\eta_d = \frac{i_1 - i_2}{i_1 - i_{2s}} \tag{3.3.12}$$

można otrzymać zależność

$$\varphi = \sqrt{\eta_d} \tag{3.3.13}$$

Dla dysz Bendemanna $\varphi = 0, 94 \div 0, 98$, dla dysz de Lavala $\varphi = 0, 92 \div 0, 95$.

3.3.3 Wzory do obliczeń dysz

Strumień masy przepływający przez dyszę

$$\dot{m} = \varphi A_2 \psi_2 \sqrt{\frac{p_0}{v_0}} = \varphi A_2 \psi_2 \frac{p_0}{\sqrt{RT_0}}$$
(3.3.14)

gdzie ψ to tzw. funkcja przepływu, która w przekroju 2 ma wartość

$$\psi_2 = \sqrt{\frac{2\kappa}{\kappa - 1} \left(\frac{p_2}{p_0}\right)^{\frac{2}{\kappa}} \left[1 - \left(\frac{p_2}{p_0}\right)^{\frac{\kappa - 1}{\kappa}}\right]} \tag{3.3.15}$$

Maksymalna wartość funkcji przepływu występuje dla krytycznego stosunku ciśnień β_{kr} związanego z najmniejszym przekrojem kanału. Krytyczny stosunek ciśnień obliczamy ze wzoru

$$\beta_{kr} = \frac{p_{kr}}{p_0} = \left(\frac{2}{\kappa+1}\right)^{\frac{\kappa}{\kappa-1}}$$
(3.3.16)

Ponadto dla krytycznego stosunku ciśnień występuje maksymalny strumień masy możliwy do przepuszczenia przez dyszę (tzw. przepustowość dyszy). Oznacza to, że ciśnienie krytyczne p_{kr} wystąpi w dyszy tylko dla przypadku maksymalnego strumienia

masy czynnika i w jej najmniejszym przekroju. Dalsze obniżanie ciśnienia za dyszą do $p < p_{kr}$ nie wpływa na strumień masy, który pozostaje stały i równy \dot{m}_{max} .

$$\dot{m}_{max} = \varphi A_{min} \psi_{max} \sqrt{\frac{p_0}{v_0}} \tag{3.3.17}$$

gdzie ψ_{max}

$$\psi_{max} = \psi(\beta_{kr}) = \sqrt{\kappa \left(\frac{2}{\kappa+1}\right)^{\frac{\kappa+1}{\kappa-1}}}$$
(3.3.18)

Wynika stąd, że w dyszy Bendemanna w przekroju wylotowym (najmniejszym) najniższe możliwe ciśnienie jakie można uzyskać to $p = p_{kr} = \beta_{kr}p_0$. Jeśli czynnik w dyszy trzeba rozprężyć do ciśnienia $p < p_{kr}$ konieczne jest użycie dyszy zbieżno-rozbieżnej, czyli dyszy de Lavala. Jeśli $\beta \leq \beta_{kr}$ w najmniejszym przekroju dyszy wystąpią tzw. parametry krytyczne (dla przepływu adiabatycznego beztarciowego).

Temperatura krytyczna

$$T_{kr} = T_0 \frac{2}{\kappa + 1} \tag{3.3.19}$$

Objętość właściwa krytyczna

$$v_{kr} = v_0 \left(\frac{\kappa+1}{2}\right)^{\frac{1}{\kappa-1}}$$
 (3.3.20)

Prędkość dźwięku

$$a = \sqrt{\kappa R T} \tag{3.3.21}$$

Prędkość krytyczna (prędkość równa lokalnej prędkości dźwięku)

$$w_{kr} = \sqrt{2\frac{\kappa}{\kappa+1}p_0v_0} = \sqrt{2\frac{\kappa}{\kappa+1}RT_0}$$
(3.3.22)

Liczba Macha

$$Ma = \frac{w}{a} \tag{3.3.23}$$

Wnioski końcowe:

- 1. Jeżeli $0 \leq \frac{p_2}{p_0} \leq \beta_{kr}$ (gdzie p_2 to ciśnienie za dyszą) to prędkość w przekroju minimalnym jest równa prędkości krytycznej (3.3.22) a strumień masy jest stały i maksymalny (3.3.17).
- 2. Jeżel
i $\beta_{kr} \leq \frac{p_2}{p_0} \leq 1$ to prędkość i strumień masy obliczamy odpowiednio ze wzorów (3.3.10)
i (3.3.14).
- 3. Jeżeli ciśnienie p_0 jest zmienne i $\frac{p_2}{p_0} \leq \beta_{kr}$ to strumień masy jest proporcjonalny do p_0 .

3.3.4 Zasada zachowania ilości ruchu

Zgodnie z [3] (str. 385): "wypadkowa siła zewnętrzna działająca na masę gazu zawartą w strumieniu między dwoma przekrojami kontrolnymi równa się przyrostowi pędów przenikających wspomniane przekroje". Jeżeli przez kanał dyszy, której powierzchnie przekroju otworu wlotowego i wylotowego wynoszą odpowiednio A_1 i A_2 , przepływa płyn, którego strumień masy wynosi \dot{m} , a prędkości w przekrojach wlotowym i wylotowym wynoszą odpowiednio w_1 i w_2 , to siłę F oddziałującą na strugę możemy obliczyć jako

$$F = \dot{m}(w_2 - w_1) \tag{3.3.24}$$

Siła F jest wypadkową sił: F_p (siła pochodząca od pobocznicy dyszy), $F_1 = p_1 A_1$ i $F_2 = p_2 A_2$ (siły działające na strugę w przekrojach wlotowym i wylotowym)

$$F = F_p + p_1 A_1 - p_2 A_2 \tag{3.3.25}$$

3.4 Sprężarki

3.5 Siłownie parowe

Sprawność kotła (brutto)

$$\eta_k = \frac{\dot{m_p} \left(i_1 - i_4 \right)}{\dot{P} W_d} \tag{3.5.1}$$

gdzie m_p strumień masy pary, i_1 entalpia pary po wyjściu z kotła, i_4 entalpia wody zasilającej, \dot{P} strumień masy paliwa, W_d wartość opałowa paliwa.

Sprawność obiegu Clausiusa-Rankine'a

$$\eta_{CR} = \frac{l_{CR}}{q_d} \approx \frac{i_1 - i_{2s}}{i_1 - i_4} \tag{3.5.2}$$

gdzie l_{CR} praca obiegu Clausiusa-Rankine'a, q_d ciepło dostarczone, i_{2s} entalpia pary po izentropowym rozprężaniu w turbinie.

Sprawność wewnętrzna turbiny (stosunek pracy wewnętrznej l_i do pracy teoretycznej l_{CR})

$$\eta_i = \frac{l_i}{l_{CR}} = \frac{i_1 - i_2}{i_1 - i_{2s}} \tag{3.5.3}$$

Sprawność mechaniczna turbiny (stosunek pracy efektywnej (otrzymanej na sprzęgle) l_e do pracy wewnętrznej l_i)

$$\eta_m = \frac{l_e}{l_i} \tag{3.5.4}$$

Sprawność generatora elektrycznego (stosunek wytworzonej mocy elektrycznej N_{el} do mocy efektywnej turbiny $N_e)$

$$\eta_g = \frac{N_{el}}{N_e} \tag{3.5.5}$$

Sprawność energetyczna obiegu (stosunek mocy wewnętrznej turbiny N_i do strumienia ciepła pobieranego przez czynnik $\dot{Q}_d)$

$$\eta_{ob} = \frac{N_i}{\dot{Q}_d} = \frac{l_{CR}}{q_d} \frac{l_i}{l_{CR}} = \eta_{CR} \eta_i \tag{3.5.6}$$

Sprawność energetyczna siłowni (stosunek mocy efektywnej turbiny N_e do energii chemicznej spalanego paliwa $\dot{P}W_d)$

$$\eta_{sil} = \frac{N_e}{\dot{P}W_d} = \frac{\dot{m}_p q_d}{\dot{P}W_d} \frac{l_{CR}}{q_d} \frac{l_i}{l_{CR}} \frac{l_e}{l_i} = \eta_k \eta_{CR} \eta_i \eta_m \tag{3.5.7}$$

Moc wewnętrzna pompy

$$N_{ip} = \dot{m}l_{ip} = \dot{m}\frac{(p_4 - p_3)v_3}{\eta_{ip}}$$
(3.5.8)

gdzie \dot{m} strumień masy wody przetłaczanej przez pompę, p_3 i p_4 ciśnienie przed i po sprężeniu przez pompę, v_3 objętość właściwa, η_{ip} sprawność wewnętrzna pompy.

Bibliografia

- [1] Y. Cengel: Heat Transfer: A Practical Approach 2nd Edition, Mcgraw-Hill, 2002.
- [2] E. Kostowski: Zbiór zadań z przepływu ciepła, Wydawnictwo Politechniki Śląskiej, Gliwice 2006.
- [3] S. Ochęduszko: Teoria maszyn cieplnych, cz. 1, Państwowe Wydawnictwa Techniczne, Warszawa 1957.
- [4] B. Staniszewski: Wymiana ciepła, PWN, Warszawa 1980.
- [5] J. Szargut: Termodynamika techniczna, Wydawnictwo Politechniki Śląskiej, Gliwice 2011.
- [6] S. Wiśniewski, T. S. Wiśniewski: Wymiana ciepła, WNT, Warszawa 2000.